DFI/eigener_ctrl/stm32f407-olimex/chibios/os/various/cpp_wrappers/ch.hpp
2018-01-09 00:16:11 +01:00

2100 lines
72 KiB
C++
Executable file

/*
ChibiOS - Copyright (C) 2006..2016 Giovanni Di Sirio
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/**
* @file ch.hpp
* @brief C++ wrapper classes and definitions.
*
* @addtogroup cpp_library
* @{
*/
#include <ch.h>
#ifndef _CH_HPP_
#define _CH_HPP_
/**
* @brief ChibiOS-RT kernel-related classes and interfaces.
*/
namespace chibios_rt {
/* Forward declarations */
class Mutex;
/*------------------------------------------------------------------------*
* chibios_rt::System *
*------------------------------------------------------------------------*/
/**
* @brief Class encapsulating the base system functionalities.
*/
class System {
public:
/**
* @brief ChibiOS/RT initialization.
* @details After executing this function the current instructions stream
* becomes the main thread.
* @pre Interrupts must be still disabled when @p chSysInit() is invoked
* and are internally enabled.
* @post The main thread is created with priority @p NORMALPRIO.
* @note This function has special, architecture-dependent, requirements,
* see the notes into the various port reference manuals.
*
* @special
*/
static inline void init(void) {
chSysInit();
}
/**
* @brief Halts the system.
* @details This function is invoked by the operating system when an
* unrecoverable error is detected, for example because a programming
* error in the application code that triggers an assertion while
* in debug mode.
* @note Can be invoked from any system state.
*
* @param[in] reason pointer to an error string
*
* @special
*/
static inline void halt(const char *reason) {
chSysHalt(reason);
}
/**
* @brief System integrity check.
* @details Performs an integrity check of the important ChibiOS/RT data
* structures.
* @note The appropriate action in case of failure is to halt the system
* before releasing the critical zone.
* @note If the system is corrupted then one possible outcome of this
* function is an exception caused by @p NULL or corrupted pointers
* in list elements. Exception vectors must be monitored as well.
* @note This function is not used internally, it is up to the
* application to define if and where to perform system
* checking.
* @note Performing all tests at once can be a slow operation and can
* degrade the system response time. It is suggested to execute
* one test at time and release the critical zone in between tests.
*
* @param[in] testmask Each bit in this mask is associated to a test to be
* performed.
* @return The test result.
* @retval false The test succeeded.
* @retval true Test failed.
*
* @iclass
*/
static inline bool integrityCheckI(unsigned int testmask) {
return chSysIntegrityCheckI(testmask);
}
/**
* @brief Enters the kernel lock mode.
*
* @special
*/
static inline void lock(void) {
chSysLock();
}
/**
* @brief Leaves the kernel lock mode.
*
* @special
*/
static inline void unlock(void) {
chSysUnlock();
}
/**
* @brief Enters the kernel lock mode from within an interrupt handler.
* @note This API may do nothing on some architectures, it is required
* because on ports that support preemptable interrupt handlers
* it is required to raise the interrupt mask to the same level of
* the system mutual exclusion zone.<br>
* It is good practice to invoke this API before invoking any I-class
* syscall from an interrupt handler.
* @note This API must be invoked exclusively from interrupt handlers.
*
* @special
*/
static inline void lockFromIsr(void) {
chSysLockFromISR();
}
/**
* @brief Leaves the kernel lock mode from within an interrupt handler.
*
* @note This API may do nothing on some architectures, it is required
* because on ports that support preemptable interrupt handlers
* it is required to raise the interrupt mask to the same level of
* the system mutual exclusion zone.<br>
* It is good practice to invoke this API after invoking any I-class
* syscall from an interrupt handler.
* @note This API must be invoked exclusively from interrupt handlers.
*
* @special
*/
static inline void unlockFromIsr(void) {
chSysUnlockFromISR();
}
/**
* @brief Returns the system time as system ticks.
* @note The system tick time interval is implementation dependent.
*
* @return The system time.
*
* @api
*/
static inline systime_t getTime(void) {
return chVTGetSystemTime();
}
/**
* @brief Returns the system time as system ticks.
* @note The system tick time interval is implementation dependent.
*
* @return The system time.
*
* @xclass
*/
static inline systime_t getTimeX(void) {
return chVTGetSystemTimeX();
}
/**
* @brief Checks if the current system time is within the specified time
* window.
* @note When start==end then the function returns always true because the
* whole time range is specified.
*
* @param[in] start the start of the time window (inclusive)
* @param[in] end the end of the time window (non inclusive)
* @retval true current time within the specified time window.
* @retval false current time not within the specified time window.
*
* @api
*/
static inline bool isSystemTimeWithin(systime_t start, systime_t end) {
return chVTIsSystemTimeWithin(start, end);
}
};
#if CH_CFG_USE_MEMCORE || defined(__DOXYGEN__)
/*------------------------------------------------------------------------*
* chibios_rt::Core *
*------------------------------------------------------------------------*/
/**
* @brief Class encapsulating the base system functionalities.
*/
class Core {
public:
/**
* @brief Allocates a memory block.
* @details The size of the returned block is aligned to the alignment
* type so it is not possible to allocate less
* than <code>MEM_ALIGN_SIZE</code>.
*
* @param[in] size the size of the block to be allocated
* @return A pointer to the allocated memory block.
* @retval NULL allocation failed, core memory exhausted.
*
* @api
*/
static inline void *alloc(size_t size) {
return chCoreAlloc(size);
}
/**
* @brief Allocates a memory block.
* @details The size of the returned block is aligned to the alignment
* type so it is not possible to allocate less than
* <code>MEM_ALIGN_SIZE</code>.
*
* @param[in] size the size of the block to be allocated.
* @return A pointer to the allocated memory block.
* @retval NULL allocation failed, core memory exhausted.
*
* @iclass
*/
static inline void *allocI(size_t size) {
return chCoreAllocI(size);
}
/**
* @brief Core memory status.
*
* @return The size, in bytes, of the free core memory.
*
* @xclass
*/
static inline size_t getStatusX(void) {
return chCoreGetStatusX();
}
};
#endif /* CH_CFG_USE_MEMCORE */
/*------------------------------------------------------------------------*
* chibios_rt::Timer *
*------------------------------------------------------------------------*/
/**
* @brief Timer class.
*/
class Timer {
public:
/**
* @brief Embedded @p VirtualTimer structure.
*/
::virtual_timer_t timer_ref;
/**
* @brief Enables a virtual timer.
* @note The associated function is invoked from interrupt context.
*
* @param[in] time the number of ticks before the operation timeouts,
* the special values are handled as follow:
* - @a TIME_INFINITE is allowed but interpreted as a
* normal time specification.
* - @a TIME_IMMEDIATE this value is not allowed.
* .
* @param[in] vtfunc the timer callback function. After invoking the
* callback the timer is disabled and the structure
* can be disposed or reused.
* @param[in] par a parameter that will be passed to the callback
* function
*
* @iclass
*/
inline void setI(systime_t time, vtfunc_t vtfunc, void *par);
/**
* @brief Resets the timer, if armed.
*
* @iclass
*/
inline void resetI();
/**
* @brief Returns the timer status.
*
* @retval TRUE The timer is armed.
* @retval FALSE The timer already fired its callback.
*
* @iclass
*/
inline bool isArmedI(void);
};
/*------------------------------------------------------------------------*
* chibios_rt::ThreadStayPoint *
*------------------------------------------------------------------------*/
/**
* @brief Thread suspension point class.
* @details This class encapsulates a reference to a suspended thread.
*/
class ThreadStayPoint {
public:
/**
* @brief Pointer to the system thread.
*/
::thread_reference_t thread_ref;
/**
* @brief Suspends the current thread on the reference.
* @details The suspended thread becomes the referenced thread. It is
* possible to use this method only if the thread reference
* was set to @p NULL.
*
* @return The incoming message.
*
* @sclass
*/
inline msg_t suspendS(void);
/**
* @brief Suspends the current thread on the reference with timeout.
* @details The suspended thread becomes the referenced thread. It is
* possible to use this method only if the thread reference
* was set to @p NULL.
*
*
* @param[in] timeout the number of ticks before the operation timeouts,
* the following special values are allowed:
* - @a TIME_IMMEDIATE immediate timeout.
* - @a TIME_INFINITE no timeout.
* .
* @return A message specifying how the invoking thread has
* been released from the semaphore.
* @retval MSG_OK if the binary semaphore has been successfully
* taken.
* @retval MSG_RESET if the binary semaphore has been reset using
* @p bsemReset().
* @retval MSG_TIMEOUT if the binary semaphore has not been signaled
* or reset within the specified timeout.
*
* @sclass
*/
inline msg_t suspendS(systime_t timeout);
/**
* @brief Resumes the currently referenced thread, if any.
*
* @param[in] msg the wakeup message
*
* @iclass
*/
inline void resumeI(msg_t msg);
/**
* @brief Resumes the currently referenced thread, if any.
*
* @param[in] msg the wakeup message
*
* @sclass
*/
inline void resumeS(msg_t msg);
};
/*------------------------------------------------------------------------*
* chibios_rt::ThreadReference *
*------------------------------------------------------------------------*/
/**
* @brief Thread reference class.
* @details This class encapsulates a reference to a system thread. All
* operations involving another thread are performed through
* an object of this type.
*/
class ThreadReference {
public:
/**
* @brief Pointer to the system thread.
*/
::thread_t *thread_ref;
/**
* @brief Thread reference constructor.
*
* @param[in] tp the target thread. This parameter can be
* @p NULL if the thread is not known at
* creation time.
*
* @init
*/
ThreadReference(thread_t *tp) : thread_ref(tp) {
};
/**
* @brief Stops the thread.
* @note The implementation is left to descendant classes and is
* optional.
*/
virtual void stop(void);
/**
* @brief Requests a thread termination.
* @pre The target thread must be written to invoke periodically
* @p chThdShouldTerminate() and terminate cleanly if it returns
* @p TRUE.
* @post The specified thread will terminate after detecting the
* termination condition.
*
* @api
*/
void requestTerminate(void);
#if CH_CFG_USE_WAITEXIT || defined(__DOXYGEN__)
/**
* @brief Blocks the execution of the invoking thread until the specified
* thread terminates then the exit code is returned.
* @details This function waits for the specified thread to terminate then
* decrements its reference counter, if the counter reaches zero
* then the thread working area is returned to the proper
* allocator.<br>
* The memory used by the exited thread is handled in different
* ways depending on the API that spawned the thread:
* - If the thread was spawned by @p chThdCreateStatic() or by
* @p chThdCreateI() then nothing happens and the thread working
* area is not released or modified in any way. This is the
* default, totally static, behavior.
* - If the thread was spawned by @p chThdCreateFromHeap() then
* the working area is returned to the system heap.
* - If the thread was spawned by @p chThdCreateFromMemoryPool()
* then the working area is returned to the owning memory pool.
* .
* @pre The configuration option @p CH_USE_WAITEXIT must be enabled in
* order to use this function.
* @post Enabling @p chThdWait() requires 2-4 (depending on the
* architecture) extra bytes in the @p Thread structure.
* @post After invoking @p chThdWait() the thread pointer becomes
* invalid and must not be used as parameter for further system
* calls.
* @note If @p CH_USE_DYNAMIC is not specified this function just waits
* for the thread termination, no memory allocators are involved.
*
* @return The exit code from the terminated thread.
*
* @api
*/
msg_t wait(void);
#endif /* CH_CFG_USE_WAITEXIT */
#if CH_CFG_USE_MESSAGES || defined(__DOXYGEN__)
/**
* @brief Sends a message to the thread and returns the answer.
*
* @param[in] msg the sent message
* @return The returned message.
*
* @api
*/
msg_t sendMessage(msg_t msg);
/**
* @brief Returns true if there is at least one message in queue.
*
* @retval true A message is waiting in queue.
* @retval false A message is not waiting in queue.
*
* @api
*/
bool isPendingMessage(void);
/**
* @brief Returns an enqueued message or @p NULL.
*
* @return The incoming message.
*
* @api
*/
msg_t getMessage(void);
/**
* @brief Releases the next message in queue with a reply.
*
* @param[in] msg the answer message
*
* @api
*/
void releaseMessage(msg_t msg);
#endif /* CH_CFG_USE_MESSAGES */
#if CH_CFG_USE_EVENTS || defined(__DOXYGEN__)
/**
* @brief Adds a set of event flags directly to specified @p Thread.
*
* @param[in] mask the event flags set to be ORed
*
* @api
*/
void signalEvents(eventmask_t mask);
/**
* @brief Adds a set of event flags directly to specified @p Thread.
*
* @param[in] mask the event flags set to be ORed
*
* @iclass
*/
void signalEventsI(eventmask_t mask);
#endif /* CH_CFG_USE_EVENTS */
#if CH_CFG_USE_DYNAMIC || defined(__DOXYGEN__)
#endif /* CH_CFG_USE_DYNAMIC */
};
/*------------------------------------------------------------------------*
* chibios_rt::BaseThread *
*------------------------------------------------------------------------*/
/**
* @brief Abstract base class for a ChibiOS/RT thread.
* @details The thread body is the virtual function @p Main().
*/
class BaseThread : public ThreadReference {
public:
/**
* @brief BaseThread constructor.
*
* @init
*/
BaseThread(void);
/**
* @brief Thread body function.
*
* @return The exit message.
*
* @api
*/
virtual void main(void);
/**
* @brief Creates and starts a system thread.
*
* @param[in] prio thread priority
* @return A reference to the created thread with
* reference counter set to one.
*
* @api
*/
virtual ThreadReference start(tprio_t prio);
/**
* @brief Sets the current thread name.
* @pre This function only stores the pointer to the name if the option
* @p CH_USE_REGISTRY is enabled else no action is performed.
*
* @param[in] tname thread name as a zero terminated string
*
* @api
*/
static void setName(const char *tname);
/**
* @brief Changes the running thread priority level then reschedules if
* necessary.
* @note The function returns the real thread priority regardless of the
* current priority that could be higher than the real priority
* because the priority inheritance mechanism.
*
* @param[in] newprio the new priority level of the running thread
* @return The old priority level.
*
* @api
*/
static tprio_t setPriority(tprio_t newprio);
/**
* @brief Terminates the current thread.
* @details The thread goes in the @p THD_STATE_FINAL state holding the
* specified exit status code, other threads can retrieve the
* exit status code by invoking the function @p chThdWait().
* @post Eventual code after this function will never be executed,
* this function never returns. The compiler has no way to
* know this so do not assume that the compiler would remove
* the dead code.
*
* @param[in] msg thread exit code
*
* @api
*/
static void exit(msg_t msg);
/**
* @brief Terminates the current thread.
* @details The thread goes in the @p THD_STATE_FINAL state holding the
* specified exit status code, other threads can retrieve the
* exit status code by invoking the function @p chThdWait().
* @post Eventual code after this function will never be executed,
* this function never returns. The compiler has no way to
* know this so do not assume that the compiler would remove
* the dead code.
*
* @param[in] msg thread exit code
*
* @sclass
*/
static void exitS(msg_t msg);
/**
* @brief Verifies if the current thread has a termination request
* pending.
* @note Can be invoked in any context.
*
* @retval TRUE termination request pending.
* @retval FALSE termination request not pending.
*
* @special
*/
static bool shouldTerminate(void);
/**
* @brief Suspends the invoking thread for the specified time.
*
* @param[in] interval the delay in system ticks, the special values are
* handled as follow:
* - @a TIME_INFINITE the thread enters an infinite
* sleep state.
* - @a TIME_IMMEDIATE this value is not allowed.
* .
*
* @api
*/
static void sleep(systime_t interval);
/**
* @brief Suspends the invoking thread until the system time arrives to
* the specified value.
*
* @param[in] time absolute system time
*
* @api
*/
static void sleepUntil(systime_t time);
/**
* @brief Yields the time slot.
* @details Yields the CPU control to the next thread in the ready list
* with equal priority, if any.
*
* @api
*/
static void yield(void);
#if CH_CFG_USE_MESSAGES || defined(__DOXYGEN__)
/**
* @brief Waits for a message.
*
* @return The sender thread.
*
* @api
*/
static ThreadReference waitMessage(void);
#endif /* CH_CFG_USE_MESSAGES */
#if CH_CFG_USE_EVENTS || defined(__DOXYGEN__)
/**
* @brief Clears the pending events specified in the mask.
*
* @param[in] mask the events to be cleared
* @return The pending events that were cleared.
*
* @api
*/
static eventmask_t getAndClearEvents(eventmask_t mask);
/**
* @brief Adds (OR) a set of event flags on the current thread, this is
* @b much faster than using @p chEvtBroadcast() or
* @p chEvtSignal().
*
* @param[in] mask the event flags to be added
* @return The current pending events mask.
*
* @api
*/
static eventmask_t addEvents(eventmask_t mask);
/**
* @brief Waits for a single event.
* @details A pending event among those specified in @p ewmask is selected,
* cleared and its mask returned.
* @note One and only one event is served in the function, the one with
* the lowest event id. The function is meant to be invoked into
* a loop in order to serve all the pending events.<br>
* This means that Event Listeners with a lower event identifier
* have an higher priority.
*
* @param[in] ewmask mask of the events that the function should
* wait for, @p ALL_EVENTS enables all the events
* @return The mask of the lowest id served and cleared
* event.
*
* @api
*/
static eventmask_t waitOneEvent(eventmask_t ewmask);
/**
* @brief Waits for any of the specified events.
* @details The function waits for any event among those specified in
* @p ewmask to become pending then the events are cleared and
* returned.
*
* @param[in] ewmask mask of the events that the function should
* wait for, @p ALL_EVENTS enables all the events
* @return The mask of the served and cleared events.
*
* @api
*/
static eventmask_t waitAnyEvent(eventmask_t ewmask);
/**
* @brief Waits for all the specified event flags then clears them.
* @details The function waits for all the events specified in @p ewmask
* to become pending then the events are cleared and returned.
*
* @param[in] ewmask mask of the event ids that the function should
* wait for
* @return The mask of the served and cleared events.
*
* @api
*/
static eventmask_t waitAllEvents(eventmask_t ewmask);
#if CH_CFG_USE_EVENTS_TIMEOUT || defined(__DOXYGEN__)
/**
* @brief Waits for a single event.
* @details A pending event among those specified in @p ewmask is selected,
* cleared and its mask returned.
* @note One and only one event is served in the function, the one with
* the lowest event id. The function is meant to be invoked into
* a loop in order to serve all the pending events.<br>
* This means that Event Listeners with a lower event identifier
* have an higher priority.
*
* @param[in] ewmask mask of the events that the function should
* wait for, @p ALL_EVENTS enables all the events
*
* @param[in] time the number of ticks before the operation
* timouts
* @return The mask of the lowest id served and cleared
* event.
* @retval 0 if the specified timeout expired.
*
* @api
*/
static eventmask_t waitOneEventTimeout(eventmask_t ewmask,
systime_t time);
/**
* @brief Waits for any of the specified events.
* @details The function waits for any event among those specified in
* @p ewmask to become pending then the events are cleared and
* returned.
*
* @param[in] ewmask mask of the events that the function should
* wait for, @p ALL_EVENTS enables all the events
* @param[in] time the number of ticks before the operation
* timouts
* @return The mask of the served and cleared events.
* @retval 0 if the specified timeout expired.
*
* @api
*/
static eventmask_t waitAnyEventTimeout(eventmask_t ewmask,
systime_t time);
/**
* @brief Waits for all the specified event flags then clears them.
* @details The function waits for all the events specified in @p ewmask
* to become pending then the events are cleared and returned.
*
* @param[in] ewmask mask of the event ids that the function should
* wait for
* @param[in] time the number of ticks before the operation
* timouts
* @return The mask of the served and cleared events.
* @retval 0 if the specified timeout expired.
*
* @api
*/
static eventmask_t waitAllEventsTimeout(eventmask_t ewmask,
systime_t time);
#endif /* CH_CFG_USE_EVENTS_TIMEOUT */
/**
* @brief Invokes the event handlers associated to an event flags mask.
*
* @param[in] mask mask of the event flags to be dispatched
* @param[in] handlers an array of @p evhandler_t. The array must have
* size equal to the number of bits in eventmask_t.
*
* @api
*/
static void dispatchEvents(const evhandler_t handlers[],
eventmask_t mask);
#endif /* CH_CFG_USE_EVENTS */
#if CH_CFG_USE_MUTEXES || defined(__DOXYGEN__)
/**
* @brief Unlocks the next owned mutex in reverse lock order.
* @pre The invoking thread <b>must</b> have at least one owned mutex.
* @post The mutex is unlocked and removed from the per-thread stack of
* owned mutexes.
*
* @return A pointer to the unlocked mutex.
*
* @api
*/
static void unlockMutex(Mutex *mp);
/**
* @brief Unlocks the next owned mutex in reverse lock order.
* @pre The invoking thread <b>must</b> have at least one owned mutex.
* @post The mutex is unlocked and removed from the per-thread stack of
* owned mutexes.
* @post This function does not reschedule so a call to a rescheduling
* function must be performed before unlocking the kernel.
*
* @return A pointer to the unlocked mutex.
*
* @sclass
*/
static void unlockMutexS(Mutex *mp);
/**
* @brief Unlocks all the mutexes owned by the invoking thread.
* @post The stack of owned mutexes is emptied and all the found
* mutexes are unlocked.
* @note This function is <b>MUCH MORE</b> efficient than releasing the
* mutexes one by one and not just because the call overhead,
* this function does not have any overhead related to the
* priority inheritance mechanism.
*
* @api
*/
static void unlockAllMutexes(void);
#endif /* CH_CFG_USE_MUTEXES */
};
/*------------------------------------------------------------------------*
* chibios_rt::BaseStaticThread *
*------------------------------------------------------------------------*/
/**
* @brief Static threads template class.
* @details This class introduces static working area allocation.
*
* @param N the working area size for the thread class
*/
template <int N>
class BaseStaticThread : public BaseThread {
protected:
THD_WORKING_AREA(wa, N);
public:
/**
* @brief Thread constructor.
* @details The thread object is initialized but the thread is not
* started here.
*
* @init
*/
BaseStaticThread(void) : BaseThread() {
}
/**
* @brief Creates and starts a system thread.
*
* @param[in] prio thread priority
* @return A reference to the created thread with
* reference counter set to one.
*
* @api
*/
virtual ThreadReference start(tprio_t prio) {
void _thd_start(void *arg);
thread_ref = chThdCreateStatic(wa, sizeof(wa), prio, _thd_start, this);
return *this;
}
};
#if CH_CFG_USE_SEMAPHORES || defined(__DOXYGEN__)
/*------------------------------------------------------------------------*
* chibios_rt::CounterSemaphore *
*------------------------------------------------------------------------*/
/**
* @brief Class encapsulating a semaphore.
*/
class CounterSemaphore {
public:
/**
* @brief Embedded @p ::Semaphore structure.
*/
::semaphore_t sem;
/**
* @brief CounterSemaphore constructor.
* @details The embedded @p ::Semaphore structure is initialized.
*
* @param[in] n the semaphore counter value, must be greater
* or equal to zero
*
* @init
*/
CounterSemaphore(cnt_t n);
/**
* @brief Performs a reset operation on the semaphore.
* @post After invoking this function all the threads waiting on the
* semaphore, if any, are released and the semaphore counter is
* set to the specified, non negative, value.
* @note The released threads can recognize they were waked up by a
* reset rather than a signal because the @p chSemWait() will
* return @p MSG_RESET instead of @p MSG_OK.
*
* @param[in] n the new value of the semaphore counter. The value
* must be non-negative.
*
* @api
*/
void reset(cnt_t n);
/**
* @brief Performs a reset operation on the semaphore.
* @post After invoking this function all the threads waiting on the
* semaphore, if any, are released and the semaphore counter is
* set to the specified, non negative, value.
* @post This function does not reschedule so a call to a rescheduling
* function must be performed before unlocking the kernel. Note
* that interrupt handlers always reschedule on exit so an
* explicit reschedule must not be performed in ISRs.
* @note The released threads can recognize they were waked up by a
* reset rather than a signal because the @p chSemWait() will
* return @p MSG_RESET instead of @p MSG_OK.
*
* @param[in] n the new value of the semaphore counter. The value
* must be non-negative.
*
* @iclass
*/
void resetI(cnt_t n);
/**
* @brief Performs a wait operation on a semaphore.
*
* @return A message specifying how the invoking thread has
* been released from the semaphore.
* @retval MSG_OK if the thread has not stopped on the semaphore or
* the semaphore has been signaled.
* @retval MSG_RESET if the semaphore has been reset using
* @p chSemReset().
*
* @api
*/
msg_t wait(void);
/**
* @brief Performs a wait operation on a semaphore.
*
* @return A message specifying how the invoking thread has
* been released from the semaphore.
* @retval MSG_OK if the thread has not stopped on the semaphore or
* the semaphore has been signaled.
* @retval MSG_RESET if the semaphore has been reset using
* @p chSemReset().
*
* @sclass
*/
msg_t waitS(void);
/**
* @brief Performs a wait operation on a semaphore with timeout
* specification.
*
* @param[in] time the number of ticks before the operation timeouts,
* the following special values are allowed:
* - @a TIME_IMMEDIATE immediate timeout.
* - @a TIME_INFINITE no timeout.
* .
* @return A message specifying how the invoking thread has
* been released from the semaphore.
* @retval MSG_OK if the thread has not stopped on the semaphore or
* the semaphore has been signaled.
* @retval MSG_RESET if the semaphore has been reset using
* @p chSemReset().
* @retval MSG_TIMEOUT if the semaphore has not been signaled or reset
* within the specified timeout.
*
* @api
*/
msg_t wait(systime_t time);
/**
* @brief Performs a wait operation on a semaphore with timeout
* specification.
*
* @param[in] time the number of ticks before the operation timeouts,
* the following special values are allowed:
* - @a TIME_IMMEDIATE immediate timeout.
* - @a TIME_INFINITE no timeout.
* .
* @return A message specifying how the invoking thread has
* been released from the semaphore.
* @retval MSG_OK if the thread has not stopped on the semaphore or
* the semaphore has been signaled.
* @retval MSG_RESET if the semaphore has been reset using
* @p chSemReset().
* @retval MSG_TIMEOUT if the semaphore has not been signaled or reset
* within the specified timeout.
*
* @sclass
*/
msg_t waitS(systime_t time);
/**
* @brief Performs a signal operation on a semaphore.
*
* @api
*/
void signal(void);
/**
* @brief Performs a signal operation on a semaphore.
* @post This function does not reschedule so a call to a rescheduling
* function must be performed before unlocking the kernel. Note
* that interrupt handlers always reschedule on exit so an
* explicit reschedule must not be performed in ISRs.
*
* @iclass
*/
void signalI(void);
/**
* @brief Adds the specified value to the semaphore counter.
* @post This function does not reschedule so a call to a rescheduling
* function must be performed before unlocking the kernel. Note
* that interrupt handlers always reschedule on exit so an explicit
* reschedule must not be performed in ISRs.
*
* @param[in] n value to be added to the semaphore counter. The
* value must be positive.
*
* @iclass
*/
void addCounterI(cnt_t n);
/**
* @brief Returns the semaphore counter value.
*
* @return The semaphore counter value.
*
* @iclass
*/
cnt_t getCounterI(void);
/**
* @brief Atomic signal and wait operations.
*
* @param[in] ssem @p Semaphore object to be signaled
* @param[in] wsem @p Semaphore object to wait on
* @return A message specifying how the invoking thread
* has been released from the semaphore.
* @retval MSG_OK if the thread has not stopped on the semaphore
* or the semaphore has been signaled.
* @retval MSG_RESET if the semaphore has been reset using
* @p chSemReset().
*
* @api
*/
static msg_t signalWait(CounterSemaphore *ssem,
CounterSemaphore *wsem);
};
/*------------------------------------------------------------------------*
* chibios_rt::BinarySemaphore *
*------------------------------------------------------------------------*/
/**
* @brief Class encapsulating a binary semaphore.
*/
class BinarySemaphore {
public:
/**
* @brief Embedded @p ::Semaphore structure.
*/
::binary_semaphore_t bsem;
/**
* @brief BinarySemaphore constructor.
* @details The embedded @p ::BinarySemaphore structure is initialized.
*
* @param[in] taken initial state of the binary semaphore:
* - @a false, the initial state is not taken.
* - @a true, the initial state is taken.
* .
*
* @init
*/
BinarySemaphore(bool taken);
/**
* @brief Wait operation on the binary semaphore.
*
* @return A message specifying how the invoking thread has
* been released from the semaphore.
* @retval MSG_OK if the binary semaphore has been successfully
* taken.
* @retval MSG_RESET if the binary semaphore has been reset using
* @p bsemReset().
*
* @api
*/
msg_t wait(void);
/**
* @brief Wait operation on the binary semaphore.
*
* @return A message specifying how the invoking thread has
* been released from the semaphore.
* @retval MSG_OK if the binary semaphore has been successfully
* taken.
* @retval MSG_RESET if the binary semaphore has been reset using
* @p bsemReset().
*
* @sclass
*/
msg_t waitS(void);
/**
* @brief Wait operation on the binary semaphore.
*
* @param[in] time the number of ticks before the operation timeouts,
* the following special values are allowed:
* - @a TIME_IMMEDIATE immediate timeout.
* - @a TIME_INFINITE no timeout.
* .
* @return A message specifying how the invoking thread has
* been released from the semaphore.
* @retval MSG_OK if the binary semaphore has been successfully
* taken.
* @retval MSG_RESET if the binary semaphore has been reset using
* @p bsemReset().
* @retval MSG_TIMEOUT if the binary semaphore has not been signaled
* or reset within the specified timeout.
*
* @api
*/
msg_t wait(systime_t time);
/**
* @brief Wait operation on the binary semaphore.
*
* @param[in] time the number of ticks before the operation timeouts,
* the following special values are allowed:
* - @a TIME_IMMEDIATE immediate timeout.
* - @a TIME_INFINITE no timeout.
* .
* @return A message specifying how the invoking thread has
* been released from the semaphore.
* @retval MSG_OK if the binary semaphore has been successfully
* taken.
* @retval MSG_RESET if the binary semaphore has been reset using
* @p bsemReset().
* @retval MSG_TIMEOUT if the binary semaphore has not been signaled
* or reset within the specified timeout.
*
* @sclass
*/
msg_t waitS(systime_t time);
/**
* @brief Reset operation on the binary semaphore.
* @note The released threads can recognize they were waked up by a
* reset rather than a signal because the @p bsemWait() will
* return @p MSG_RESET instead of @p MSG_OK.
*
* @param[in] taken new state of the binary semaphore
* - @a FALSE, the new state is not taken.
* - @a TRUE, the new state is taken.
* .
*
* @api
*/
void reset(bool taken);
/**
* @brief Reset operation on the binary semaphore.
* @note The released threads can recognize they were waked up by a
* reset rather than a signal because the @p bsemWait() will
* return @p MSG_RESET instead of @p MSG_OK.
* @note This function does not reschedule.
*
* @param[in] taken new state of the binary semaphore
* - @a FALSE, the new state is not taken.
* - @a TRUE, the new state is taken.
* .
*
* @iclass
*/
void resetI(bool taken);
/**
* @brief Performs a signal operation on a binary semaphore.
*
* @api
*/
void signal(void);
/**
* @brief Performs a signal operation on a binary semaphore.
* @note This function does not reschedule.
*
* @iclass
*/
void signalI(void);
/**
* @brief Returns the binary semaphore current state.
*
* @return The binary semaphore current state.
* @retval false if the binary semaphore is not taken.
* @retval true if the binary semaphore is taken.
*
* @iclass
*/
bool getStateI(void);
};
#endif /* CH_CFG_USE_SEMAPHORES */
#if CH_CFG_USE_MUTEXES || defined(__DOXYGEN__)
/*------------------------------------------------------------------------*
* chibios_rt::Mutex *
*------------------------------------------------------------------------*/
/**
* @brief Class encapsulating a mutex.
*/
class Mutex {
public:
/**
* @brief Embedded @p ::Mutex structure.
*/
::mutex_t mutex;
/**
* @brief Mutex object constructor.
* @details The embedded @p ::Mutex structure is initialized.
*
* @init
*/
Mutex(void);
/**
* @brief Tries to lock a mutex.
* @details This function attempts to lock a mutex, if the mutex is already
* locked by another thread then the function exits without
* waiting.
* @post The mutex is locked and inserted in the per-thread stack of
* owned mutexes.
* @note This function does not have any overhead related to the
* priority inheritance mechanism because it does not try to
* enter a sleep state.
*
* @return The operation status.
* @retval TRUE if the mutex has been successfully acquired
* @retval FALSE if the lock attempt failed.
*
* @api
*/
bool tryLock(void);
/**
* @brief Tries to lock a mutex.
* @details This function attempts to lock a mutex, if the mutex is already
* taken by another thread then the function exits without
* waiting.
* @post The mutex is locked and inserted in the per-thread stack of
* owned mutexes.
* @note This function does not have any overhead related to the
* priority inheritance mechanism because it does not try to
* enter a sleep state.
*
* @return The operation status.
* @retval TRUE if the mutex has been successfully acquired
* @retval FALSE if the lock attempt failed.
*
* @sclass
*/
bool tryLockS(void);
/**
* @brief Locks the specified mutex.
* @post The mutex is locked and inserted in the per-thread stack of
* owned mutexes.
*
* @api
*/
void lock(void);
/**
* @brief Locks the specified mutex.
* @post The mutex is locked and inserted in the per-thread stack of
* owned mutexes.
*
* @sclass
*/
void lockS(void);
/**
* @brief Unlocks the next owned mutex in reverse lock order.
* @pre The invoking thread <b>must</b> have at least one owned mutex.
* @post The mutex is unlocked and removed from the per-thread stack of
* owned mutexes.
*
* @api
*/
void unlock(void);
/**
* @brief Unlocks the next owned mutex in reverse lock order.
* @pre The invoking thread <b>must</b> have at least one owned mutex.
* @post The mutex is unlocked and removed from the per-thread stack of
* owned mutexes.
* @post This function does not reschedule so a call to a rescheduling
* function must be performed before unlocking the kernel.
*
* @sclass
*/
void unlockS(void);
};
#if CH_CFG_USE_CONDVARS || defined(__DOXYGEN__)
/*------------------------------------------------------------------------*
* chibios_rt::CondVar *
*------------------------------------------------------------------------*/
/**
* @brief Class encapsulating a conditional variable.
*/
class CondVar {
public:
/**
* @brief Embedded @p ::CondVar structure.
*/
::condition_variable_t condvar;
/**
* @brief CondVar object constructor.
* @details The embedded @p ::CondVar structure is initialized.
*
* @init
*/
CondVar(void);
/**
* @brief Signals one thread that is waiting on the condition variable.
*
* @api
*/
void signal(void);
/**
* @brief Signals one thread that is waiting on the condition variable.
* @post This function does not reschedule so a call to a rescheduling
* function must be performed before unlocking the kernel. Note
* that interrupt handlers always reschedule on exit so an
* explicit reschedule must not be performed in ISRs.
*
* @iclass
*/
void signalI(void);
/**
* @brief Signals all threads that are waiting on the condition variable.
*
* @api
*/
void broadcast(void);
/**
* @brief Signals all threads that are waiting on the condition variable.
* @post This function does not reschedule so a call to a rescheduling
* function must be performed before unlocking the kernel. Note
* that interrupt handlers always reschedule on exit so an
* explicit reschedule must not be performed in ISRs.
*
* @iclass
*/
void broadcastI(void);
/**
* @brief Waits on the condition variable releasing the mutex lock.
* @details Releases the currently owned mutex, waits on the condition
* variable, and finally acquires the mutex again. All the
* sequence is performed atomically.
* @pre The invoking thread <b>must</b> have at least one owned mutex.
*
* @return A message specifying how the invoking thread has
* been released from the condition variable.
* @retval MSG_OK if the condvar has been signaled using
* @p chCondSignal().
* @retval MSG_RESET if the condvar has been signaled using
* @p chCondBroadcast().
*
* @api
*/
msg_t wait(void);
/**
* @brief Waits on the condition variable releasing the mutex lock.
* @details Releases the currently owned mutex, waits on the condition
* variable, and finally acquires the mutex again. All the
* sequence is performed atomically.
* @pre The invoking thread <b>must</b> have at least one owned mutex.
*
* @return A message specifying how the invoking thread has
* been released from the condition variable.
* @retval MSG_OK if the condvar has been signaled using
* @p chCondSignal().
* @retval MSG_RESET if the condvar has been signaled using
* @p chCondBroadcast().
*
* @sclass
*/
msg_t waitS(void);
#if CH_CFG_USE_CONDVARS_TIMEOUT || defined(__DOXYGEN__)
/**
* @brief Waits on the CondVar while releasing the controlling mutex.
*
* @param[in] time the number of ticks before the operation fails
* @return The wakep mode.
* @retval MSG_OK if the condvar was signaled using
* @p chCondSignal().
* @retval MSG_RESET if the condvar was signaled using
* @p chCondBroadcast().
* @retval MSG_TIMEOUT if the condvar was not signaled within the
* specified timeout.
*
* @api
*/
msg_t wait(systime_t time);
#endif /* CH_CFG_USE_CONDVARS_TIMEOUT */
};
#endif /* CH_CFG_USE_CONDVARS */
#endif /* CH_CFG_USE_MUTEXES */
#if CH_CFG_USE_EVENTS || defined(__DOXYGEN__)
/*------------------------------------------------------------------------*
* chibios_rt::EvtListener *
*------------------------------------------------------------------------*/
/**
* @brief Class encapsulating an event listener.
*/
class EvtListener {
public:
/**
* @brief Embedded @p ::EventListener structure.
*/
::event_listener_t ev_listener;
/**
* @brief Returns the pending flags from the listener and clears them.
*
* @return The flags added to the listener by the
* associated event source.
*
* @api
*/
eventflags_t getAndClearFlags(void);
/**
* @brief Returns the flags associated to an @p EventListener.
* @details The flags are returned and the @p EventListener flags mask is
* cleared.
*
* @return The flags added to the listener by the associated
* event source.
*
* @iclass
*/
eventflags_t getAndClearFlagsI(void);
};
/*------------------------------------------------------------------------*
* chibios_rt::EvtSource *
*------------------------------------------------------------------------*/
/**
* @brief Class encapsulating an event source.
*/
class EvtSource {
public:
/**
* @brief Embedded @p ::EventSource structure.
*/
::event_source_t ev_source;
/**
* @brief EvtSource object constructor.
* @details The embedded @p ::EventSource structure is initialized.
*
* @init
*/
EvtSource(void);
/**
* @brief Registers a listener on the event source.
*
* @param[in] elp pointer to the @p EvtListener object
* @param[in] eid numeric identifier assigned to the Event
* Listener
*
* @api
*/
void registerOne(chibios_rt::EvtListener *elp, eventid_t eid);
/**
* @brief Registers an Event Listener on an Event Source.
* @note Multiple Event Listeners can specify the same bits to be added.
*
* @param[in] elp pointer to the @p EvtListener object
* @param[in] emask the mask of event flags to be pended to the
* thread when the event source is broadcasted
*
* @api
*/
void registerMask(chibios_rt::EvtListener *elp, eventmask_t emask);
/**
* @brief Unregisters a listener.
* @details The specified listeners is no more signaled by the event
* source.
*
* @param[in] elp the listener to be unregistered
*
* @api
*/
void unregister(chibios_rt::EvtListener *elp);
/**
* @brief Broadcasts on an event source.
* @details All the listeners registered on the event source are signaled
* and the flags are added to the listener's flags mask.
*
* @param[in] flags the flags set to be added to the listener
* flags mask
*
* @api
*/
void broadcastFlags(eventflags_t flags);
/**
* @brief Broadcasts on an event source.
* @details All the listeners registered on the event source are signaled
* and the flags are added to the listener's flags mask.
*
* @param[in] flags the flags set to be added to the listener
* flags mask
*
* @iclass
*/
void broadcastFlagsI(eventflags_t flags);
};
#endif /* CH_CFG_USE_EVENTS */
#if CH_CFG_USE_MAILBOXES || defined(__DOXYGEN__)
/*------------------------------------------------------------------------*
* chibios_rt::Mailbox *
*------------------------------------------------------------------------*/
/**
* @brief Base mailbox class.
*
* @param T type of objects that mailbox able to handle
*/
template <typename T>
class MailboxBase {
public:
/**
* @brief Embedded @p ::Mailbox structure.
*/
::mailbox_t mb;
/**
* @brief Mailbox constructor.
* @details The embedded @p ::Mailbox structure is initialized.
*
* @param[in] buf pointer to the messages buffer as an array of
* @p msg_t
* @param[in] n number of elements in the buffer array
*
* @init
*/
MailboxBase(msg_t *buf, cnt_t n) {
chMBObjectInit(&mb, buf, n);
}
/**
* @brief Resets a Mailbox object.
* @details All the waiting threads are resumed with status @p MSG_RESET
* and the queued messages are lost.
*
* @api
*/
void reset(void) {
chMBReset(&mb);
}
/**
* @brief Posts a message into a mailbox.
* @details The invoking thread waits until a empty slot in the mailbox
* becomes available or the specified time runs out.
*
* @param[in] msg the message to be posted on the mailbox
* @param[in] time the number of ticks before the operation timeouts,
* the following special values are allowed:
* - @a TIME_IMMEDIATE immediate timeout.
* - @a TIME_INFINITE no timeout.
* .
* @return The operation status.
* @retval MSG_OK if a message has been correctly posted.
* @retval MSG_RESET if the mailbox has been reset while waiting.
* @retval MSG_TIMEOUT if the operation has timed out.
*
* @api
*/
msg_t post(T msg, systime_t time) {
return chMBPost(&mb, reinterpret_cast<msg_t>(msg), time);
}
/**
* @brief Posts a message into a mailbox.
* @details The invoking thread waits until a empty slot in the mailbox
* becomes available or the specified time runs out.
*
* @param[in] msg the message to be posted on the mailbox
* @param[in] time the number of ticks before the operation timeouts,
* the following special values are allowed:
* - @a TIME_IMMEDIATE immediate timeout.
* - @a TIME_INFINITE no timeout.
* .
* @return The operation status.
* @retval MSG_OK if a message has been correctly posted.
* @retval MSG_RESET if the mailbox has been reset while waiting.
* @retval MSG_TIMEOUT if the operation has timed out.
*
* @sclass
*/
msg_t postS(T msg, systime_t time) {
return chMBPostS(&mb, reinterpret_cast<msg_t>(msg), time);
}
/**
* @brief Posts a message into a mailbox.
* @details This variant is non-blocking, the function returns a timeout
* condition if the queue is full.
*
* @param[in] msg the message to be posted on the mailbox
* @return The operation status.
* @retval MSG_OK if a message has been correctly posted.
* @retval MSG_TIMEOUT if the mailbox is full and the message cannot be
* posted.
*
* @iclass
*/
msg_t postI(T msg) {
return chMBPostI(&mb, reinterpret_cast<msg_t>(msg));
}
/**
* @brief Posts an high priority message into a mailbox.
* @details The invoking thread waits until a empty slot in the mailbox
* becomes available or the specified time runs out.
*
* @param[in] msg the message to be posted on the mailbox
* @param[in] time the number of ticks before the operation timeouts,
* the following special values are allowed:
* - @a TIME_IMMEDIATE immediate timeout.
* - @a TIME_INFINITE no timeout.
* .
* @return The operation status.
* @retval MSG_OK if a message has been correctly posted.
* @retval MSG_RESET if the mailbox has been reset while waiting.
* @retval MSG_TIMEOUT if the operation has timed out.
*
* @api
*/
msg_t postAhead(T msg, systime_t time) {
return chMBPostAhead(&mb, reinterpret_cast<msg_t>(msg), time);
}
/**
* @brief Posts an high priority message into a mailbox.
* @details The invoking thread waits until a empty slot in the mailbox
* becomes available or the specified time runs out.
*
* @param[in] msg the message to be posted on the mailbox
* @param[in] time the number of ticks before the operation timeouts,
* the following special values are allowed:
* - @a TIME_IMMEDIATE immediate timeout.
* - @a TIME_INFINITE no timeout.
* .
* @return The operation status.
* @retval MSG_OK if a message has been correctly posted.
* @retval MSG_RESET if the mailbox has been reset while waiting.
* @retval MSG_TIMEOUT if the operation has timed out.
*
* @sclass
*/
msg_t postAheadS(T msg, systime_t time) {
return chMBPostAheadS(&mb, reinterpret_cast<msg_t>(msg), time);
}
/**
* @brief Posts an high priority message into a mailbox.
* @details This variant is non-blocking, the function returns a timeout
* condition if the queue is full.
*
* @param[in] msg the message to be posted on the mailbox
* @return The operation status.
* @retval MSG_OK if a message has been correctly posted.
* @retval MSG_TIMEOUT if the mailbox is full and the message cannot be
* posted.
*
* @iclass
*/
msg_t postAheadI(T msg) {
return chMBPostAheadI(&mb, reinterpret_cast<msg_t>(msg));
}
/**
* @brief Retrieves a message from a mailbox.
* @details The invoking thread waits until a message is posted in the
* mailbox or the specified time runs out.
*
* @param[out] msgp pointer to a message variable for the received
* @param[in] time message the number of ticks before the operation
* timeouts, the following special values are allowed:
* - @a TIME_IMMEDIATE immediate timeout.
* - @a TIME_INFINITE no timeout.
* .
* @return The operation status.
* @retval MSG_OK if a message has been correctly fetched.
* @retval MSG_RESET if the mailbox has been reset while waiting.
* @retval MSG_TIMEOUT if the operation has timed out.
*
* @api
*/
msg_t fetch(T *msgp, systime_t time) {
return chMBFetch(&mb, reinterpret_cast<msg_t*>(msgp), time);
}
/**
* @brief Retrieves a message from a mailbox.
* @details The invoking thread waits until a message is posted in the
* mailbox or the specified time runs out.
*
* @param[out] msgp pointer to a message variable for the received
* @param[in] time message the number of ticks before the operation
* timeouts, the following special values are allowed:
* - @a TIME_IMMEDIATE immediate timeout.
* - @a TIME_INFINITE no timeout.
* .
* @return The operation status.
* @retval MSG_OK if a message has been correctly fetched.
* @retval MSG_RESET if the mailbox has been reset while waiting.
* @retval MSG_TIMEOUT if the operation has timed out.
*
* @sclass
*/
msg_t fetchS(T *msgp, systime_t time) {
return chMBFetchS(&mb, reinterpret_cast<msg_t*>(msgp), time);
}
/**
* @brief Retrieves a message from a mailbox.
* @details This variant is non-blocking, the function returns a timeout
* condition if the queue is empty.
*
* @param[out] msgp pointer to a message variable for the received
* message
* @return The operation status.
* @retval MSG_OK if a message has been correctly fetched.
* @retval MSG_TIMEOUT if the mailbox is empty and a message cannot be
* fetched.
*
* @iclass
*/
msg_t fetchI(T *msgp) {
return chMBFetchI(&mb, reinterpret_cast<msg_t*>(msgp));
}
/**
* @brief Returns the number of free message slots into a mailbox.
* @note Can be invoked in any system state but if invoked out of a
* locked state then the returned value may change after reading.
* @note The returned value can be less than zero when there are waiting
* threads on the internal semaphore.
*
* @return The number of empty message slots.
*
* @iclass
*/
cnt_t getFreeCountI(void) {
return chMBGetFreeCountI(&mb);
}
/**
* @brief Returns the number of used message slots into a mailbox.
* @note Can be invoked in any system state but if invoked out of a
* locked state then the returned value may change after reading.
* @note The returned value can be less than zero when there are waiting
* threads on the internal semaphore.
*
* @return The number of queued messages.
*
* @iclass
*/
cnt_t getUsedCountI(void) {
return chMBGetUsedCountI(&mb);
}
};
/*------------------------------------------------------------------------*
* chibios_rt::Mailbox *
*------------------------------------------------------------------------*/
/**
* @brief Template class encapsulating a mailbox and its messages buffer.
*
* @param N length of the mailbox buffer
*/
template <typename T, int N>
class Mailbox : public MailboxBase<T> {
private:
msg_t mb_buf[N];
public:
/**
* @brief Mailbox constructor.
*
* @init
*/
Mailbox(void) :
MailboxBase<T>(mb_buf, (cnt_t)(sizeof mb_buf / sizeof (msg_t))) {
}
};
#endif /* CH_CFG_USE_MAILBOXES */
#if CH_CFG_USE_MEMPOOLS || defined(__DOXYGEN__)
/*------------------------------------------------------------------------*
* chibios_rt::MemoryPool *
*------------------------------------------------------------------------*/
/**
* @brief Class encapsulating a mailbox.
*/
class MemoryPool {
public:
/**
* @brief Embedded @p ::MemoryPool structure.
*/
::memory_pool_t pool;
/**
* @brief MemoryPool constructor.
*
* @param[in] size the size of the objects contained in this memory
* pool, the minimum accepted size is the size of
* a pointer to void.
* @param[in] provider memory provider function for the memory pool or
* @p NULL if the pool is not allowed to grow
* automatically
*
* @init
*/
MemoryPool(size_t size, memgetfunc_t provider);
/**
* @brief MemoryPool constructor.
*
* @param[in] size the size of the objects contained in this memory
* pool, the minimum accepted size is the size of
* a pointer to void.
* @param[in] provider memory provider function for the memory pool or
* @p NULL if the pool is not allowed to grow
* automatically
* @param[in] p pointer to the array first element
* @param[in] n number of elements in the array
*
* @init
*/
MemoryPool(size_t size, memgetfunc_t provider, void* p, size_t n);
/**
* @brief Loads a memory pool with an array of static objects.
* @pre The memory pool must be already been initialized.
* @pre The array elements must be of the right size for the specified
* memory pool.
* @post The memory pool contains the elements of the input array.
*
* @param[in] p pointer to the array first element
* @param[in] n number of elements in the array
*
* @api
*/
void loadArray(void *p, size_t n);
/**
* @brief Allocates an object from a memory pool.
* @pre The memory pool must be already been initialized.
*
* @return The pointer to the allocated object.
* @retval NULL if pool is empty.
*
* @iclass
*/
void *allocI(void);
/**
* @brief Allocates an object from a memory pool.
* @pre The memory pool must be already been initialized.
*
* @return The pointer to the allocated object.
* @retval NULL if pool is empty.
*
* @api
*/
void *alloc(void);
/**
* @brief Releases an object into a memory pool.
* @pre The memory pool must be already been initialized.
* @pre The freed object must be of the right size for the specified
* memory pool.
* @pre The object must be properly aligned to contain a pointer to
* void.
*
* @param[in] objp the pointer to the object to be released
*
* @iclass
*/
void free(void *objp);
/**
* @brief Adds an object to a memory pool.
* @pre The memory pool must be already been initialized.
* @pre The added object must be of the right size for the specified
* memory pool.
* @pre The added object must be memory aligned to the size of
* @p stkalign_t type.
* @note This function is just an alias for @p chPoolFree() and has been
* added for clarity.
*
* @param[in] objp the pointer to the object to be added
*
* @iclass
*/
void freeI(void *objp);
};
/*------------------------------------------------------------------------*
* chibios_rt::ObjectsPool *
*------------------------------------------------------------------------*/
/**
* @brief Template class encapsulating a memory pool and its elements.
*/
template<class T, size_t N>
class ObjectsPool : public MemoryPool {
private:
/* The buffer is declared as an array of pointers to void for two
reasons:
1) The objects must be properly aligned to hold a pointer as
first field.
2) There is no need to invoke constructors for object that are
into the pool.*/
void *pool_buf[(N * sizeof (T)) / sizeof (void *)];
public:
/**
* @brief ObjectsPool constructor.
*
* @init
*/
ObjectsPool(void) : MemoryPool(sizeof (T), NULL) {
loadArray(pool_buf, N);
}
};
#endif /* CH_CFG_USE_MEMPOOLS */
/*------------------------------------------------------------------------*
* chibios_rt::BaseSequentialStreamInterface *
*------------------------------------------------------------------------*/
/**
* @brief Interface of a ::BaseSequentialStream.
* @note You can cast a ::BaseSequentialStream to this interface and use
* it, the memory layout is the same.
*/
class BaseSequentialStreamInterface {
public:
/**
* @brief Sequential Stream write.
* @details The function writes data from a buffer to a stream.
*
* @param[in] bp pointer to the data buffer
* @param[in] n the maximum amount of data to be transferred
* @return The number of bytes transferred. The return value
* can be less than the specified number of bytes if
* an end-of-file condition has been met.
*
* @api
*/
virtual size_t write(const uint8_t *bp, size_t n) = 0;
/**
* @brief Sequential Stream read.
* @details The function reads data from a stream into a buffer.
*
* @param[out] bp pointer to the data buffer
* @param[in] n the maximum amount of data to be transferred
* @return The number of bytes transferred. The return value
* can be less than the specified number of bytes if
* an end-of-file condition has been met.
*
* @api
*/
virtual size_t read(uint8_t *bp, size_t n) = 0;
/**
* @brief Sequential Stream blocking byte write.
* @details This function writes a byte value to a channel. If the channel
* is not ready to accept data then the calling thread is
* suspended.
*
* @param[in] b the byte value to be written to the channel
*
* @return The operation status.
* @retval Q_OK if the operation succeeded.
* @retval Q_RESET if an end-of-file condition has been met.
*
* @api
*/
virtual msg_t put(uint8_t b) = 0;
/**
* @brief Sequential Stream blocking byte read.
* @details This function reads a byte value from a channel. If the data
* is not available then the calling thread is suspended.
*
* @return A byte value from the queue.
* @retval Q_RESET if an end-of-file condition has been met.
*
* @api
*/
virtual msg_t get(void) = 0;
};
}
#endif /* _CH_HPP_ */
/** @} */