From 939619fb12e5e14200cf355b6ade94c3c6a214ac Mon Sep 17 00:00:00 2001 From: Terra Gilbert Date: Wed, 24 Aug 2022 23:30:54 -0400 Subject: [PATCH] test --- .../ClockSketch_v7-7SCv3-TFO-3.ino | 2271 ++++++++++------- 1 file changed, 1284 insertions(+), 987 deletions(-) diff --git a/ClockSketch_v7-7SCv3-TFO-3/ClockSketch_v7-7SCv3-TFO-3.ino b/ClockSketch_v7-7SCv3-TFO-3/ClockSketch_v7-7SCv3-TFO-3.ino index 722dcbd..763b55b 100644 --- a/ClockSketch_v7-7SCv3-TFO-3/ClockSketch_v7-7SCv3-TFO-3.ino +++ b/ClockSketch_v7-7SCv3-TFO-3/ClockSketch_v7-7SCv3-TFO-3.ino @@ -1,11 +1,11 @@ /* -[ClockSketch v7.2]---------------------------------------------------------------------------------------- https://www.instructables.com/ClockSketch-V7-Part-I/ - + pre-configured for: Retro 7 Segment Clock v3 - The Final One(s) (3 LEDs/Segment) https://www.instructables.com/Retro-7-Segment-Clock-the-Final-Ones/ https://www.thingiverse.com/thing:5001559 - + Arduino UNO/Nano/Pro Mini (AtMega328, 5V, 16 MHz), DS3231 RTC May 2022 - Daniel Cikic @@ -13,52 +13,175 @@ Serial Baud Rates: Arduino: 57600 nodeMCU: 74880 - -------------------------------------------------------------------------------------------------------------- */ +-------------------------------------------------------------------------------------------------------------- */ + // comment below to disable serial in-/output and free some RAM #define DEBUG +// nodeMCU - uncomment to compile this sketch for nodeMCU 1.0 / ESP8266, make sure to select the proper board +// type inside the IDE! This mode is NOT supported and only experimental! +// #define NODEMCU + +// useWiFi - enable WiFi support, WPS setup only! If no WPS support is available on a router check settings +// further down, set useWPS to false and enter ssid/password there +// #define USEWIFI + +// useNTP - enable NTPClient, requires NODEMCU and USEWIFI. This will also enforce AUTODST. +// Configure a ntp server further down below! +// #define USENTP + +// RTC selection - uncomment the one you're using, comment all others and make sure pin assignemts for +// DS1302 are correct in the parameters section further down! +// #define RTC_DS1302 +// #define RTC_DS1307 +#define RTC_DS3231 + +// autoDST - uncomment to enable automatic DST switching, check Time Change Rules below! +// #define AUTODST + +// FADING - uncomment to enable fading effects for dots/digits, other parameters further down below +// #define FADING + +// autoBrightness - uncomment to enable automatic brightness adjustments by using a photoresistor/LDR +// #define AUTOBRIGHTNESS + +// customDisplay - uncomment this to enable displayMyStuff(). It's an example of how to display values +// at specified times, like temperature readouts +// #define CUSTOMDISPLAY + +// FastForward will speed up things and advance time, this is only for testing purposes! +// Disables AUTODST, USENTP and USERTC. +// #define FASTFORWARD + +// customHelper will start some kind of assistant when adapting this sketch to other led layouts, this +// tests all the steps neccessary to run it on almost any led strip configuration. +// #define CUSTOMHELPER + /* ----------------------------------------------------------------------------------------------------- */ + + #include // "Time" by Michael Margolis, used in all configs #include // required for reading/saving settings to eeprom -/* Start WiFi config/parameters------------------------------------------------------------------------- */ -const char* wifiSSID = "MySpectrumWiFi80-2G"; -const char* wifiPWD = "lazydoll672"; + +/* Start RTC config/parameters-------------------------------------------------------------------------- + Check pin assignments for DS1302 (SPI), others are I2C (A4/A5 on Arduino by default) + Currently all types are using the "Rtc by Makuna" library */ +#ifdef RTC_DS1302 + #include + #include + ThreeWire myWire(7, 6, 8); // IO/DAT, SCLK, CE/RST + RtcDS1302 Rtc(myWire); + #define RTCTYPE "DS1302" + #define USERTC +#endif + +#ifdef RTC_DS1307 + #include + #include + RtcDS1307 Rtc(Wire); + #define RTCTYPE "DS1307" + #define USERTC +#endif + +#ifdef RTC_DS3231 + #include + #include + RtcDS3231 Rtc(Wire); + #define RTCTYPE "DS3231" + #define USERTC +#endif + +#if !defined ( USERTC ) + #pragma message "No RTC selected, check definitions on top of the sketch!" +#endif +/* End RTC config/parameters---------------------------------------------------------------------------- */ + + +/* Start WiFi config/parameters------------------------------------------------------------------------- */ +#ifdef USEWIFI + const bool useWPS = true; // set to false to disable WPS and use credentials below + const char* wifiSSID = "maWhyFhy"; + const char* wifiPWD = "5up3r1337r0xX0r!"; +#endif /* End WiFi config/parameters--------------------------------------------------------------------------- */ -/* Start NTP config/parameters-------------------------------------------------------------------------- + +/* Start NTP config/parameters-------------------------------------------------------------------------- Using NTP will enforce autoDST, so check autoDST/time zone settings below! */ -#define NTPHOST "pool.ntp.org" +#ifdef USENTP + /* I recommend using a local ntp service (many routers offer them), don't spam public ones with dozens + of requests a day, get a rtc! ^^ */ + //#define NTPHOST "europe.pool.ntp.org" + #define NTPHOST "192.168.2.1" + #ifndef AUTODST + #define AUTODST + #endif +#endif /* End NTP config/parameters---------------------------------------------------------------------------- */ -/* Start autoDST config/parameters ---------------------------------------------------------------------- - Comment/uncomment/add TimeChangeRules as needed, only use 2 (tcr1, tcr2), comment out unused ones! + +/* Start autoDST config/parameters ---------------------------------------------------------------------- + Comment/uncomment/add TimeChangeRules as needed, only use 2 (tcr1, tcr2), comment out unused ones! Enabling/disabling autoDST will require to set time again, clock will be running in UTC time if autoDST - is enabled, only display times are adjusted (check serial monitor with DEBUG defined!) + is enabled, only display times are adjusted (check serial monitor with DEBUG defined!) This will also add options for setting the date (Year/Month/Day) when setting time on the clock! */ -#include // "Timezone" by Jack Christensen -TimeChangeRule *tcr; -//----------------------------------------------- -/* US */ -TimeChangeRule tcr1 = {"tcr1", First, Sun, Nov, 2, -360}; // utc -6h, valid from first sunday of november at 2am -TimeChangeRule tcr2 = {"tcr2", Second, Sun, Mar, 2, -300}; // utc -5h, valid from second sunday of march at 2am -//----------------------------------------------- -Timezone myTimeZone(tcr1, tcr2); +#ifdef AUTODST + #include // "Timezone" by Jack Christensen + TimeChangeRule *tcr; + //----------------------------------------------- + /* US */ + // TimeChangeRule tcr1 = {"tcr1", First, Sun, Nov, 2, -360}; // utc -6h, valid from first sunday of november at 2am + // TimeChangeRule tcr2 = {"tcr2", Second, Sun, Mar, 2, -300}; // utc -5h, valid from second sunday of march at 2am + //----------------------------------------------- + /* Europe */ + TimeChangeRule tcr1 = {"tcr1", Last, Sun, Oct, 3, 60}; // standard/winter time, valid from last sunday of october at 3am, UTC + 1 hour (+60 minutes) (negative value like -300 for utc -5h) + TimeChangeRule tcr2 = {"tcr2", Last, Sun, Mar, 2, 120}; // daylight/summer time, valid from last sunday of march at 2am, UTC + 2 hours (+120 minutes) + //----------------------------------------------- + Timezone myTimeZone(tcr1, tcr2); +#endif /* End autoDST config/parameters ----------------------------------------------------------------------- */ + +/* Start autoBrightness config/parameters -------------------------------------------------------------- */ +uint8_t upperLimitLDR = 180; // everything above this value will cause max brightness (according to current level) to be used (if it's higher than this) +uint8_t lowerLimitLDR = 50; // everything below this value will cause minBrightness to be used +uint8_t minBrightness = 30; // anything below this avgLDR value will be ignored +const bool nightMode = false; // nightmode true -> if minBrightness is used, colorizeOutput() will use a single color for everything, using HSV +const uint8_t nightColor[2] = { 0, 70 }; // hue 0 = red, fixed brightness of 70, https://github.com/FastLED/FastLED/wiki/FastLED-HSV-Colors +float factorLDR = 1.0; // try 0.5 - 2.0, compensation value for avgLDR. Set dbgLDR true & define DEBUG and watch the serial monitor. Looking... +const bool dbgLDR = false; // ...for values roughly in the range of 120-160 (medium room light), 40-80 (low light) and 0 - 20 in the dark +#ifdef NODEMCU + uint8_t pinLDR = 0; // LDR connected to A0 (nodeMCU only offers this one) +#else + uint8_t pinLDR = 1; // LDR connected to A1 (in case somebody flashes this sketch on arduino and already has an ldr connected to A1) +#endif +uint8_t intervalLDR = 75; // read value from LDR every 75ms (most LDRs have a minimum of about 30ms - 50ms) +uint16_t avgLDR = 0; // we will average this value somehow somewhere in readLDR(); +uint16_t lastAvgLDR = 0; // last average LDR value we got +/* End autoBrightness config/parameters ---------------------------------------------------------------- */ + + #define SKETCHNAME "ClockSketch v7.2" #define CLOCKNAME "Retro 7 Segment Clock v3 - The Final One(s), 3 LEDs/segment" + /* Start button config/pins----------------------------------------------------------------------------- */ -const uint8_t buttonA = 13; // momentary push button, 1 pin to gnd, 1 pin to d7 / GPIO_13 -const uint8_t buttonB = 14; // momentary push button, 1 pin to gnd, 1 pin to d5 / GPIO_14 +#ifdef NODEMCU + const uint8_t buttonA = 13; // momentary push button, 1 pin to gnd, 1 pin to d7 / GPIO_13 + const uint8_t buttonB = 14; // momentary push button, 1 pin to gnd, 1 pin to d5 / GPIO_14 +#else + const uint8_t buttonA = 3; // momentary push button, 1 pin to gnd, 1 pin to d3 + const uint8_t buttonB = 4; // momentary push button, 1 pin to gnd, 1 pin to d4 +#endif /* End button config/pins------------------------------------------------------------------------------- */ + /* Start basic appearance config------------------------------------------------------------------------ */ const bool dotsBlinking = true; // true = only light up dots on even seconds, false = always on const bool leadingZero = false; // true = enable a leading zero, 9:00 -> 09:00, 1:30 -> 01:30... -uint8_t displayMode = 1; // 0 = 24h mode, 1 = 12h mode ("1" will also override setting that might be written to EEPROM!) +uint8_t displayMode = 0; // 0 = 24h mode, 1 = 12h mode ("1" will also override setting that might be written to EEPROM!) uint8_t colorMode = 0; // different color modes, setting this to anything else than zero will overwrite values written to eeprom, as above uint16_t colorSpeed = 750; // controls how fast colors change, smaller = faster (interval in ms at which color moves inside colorizeOutput();) const bool colorPreview = true; // true = preview selected palette/colorMode using "8" on all positions for 3 seconds @@ -66,65 +189,114 @@ const uint8_t colorPreviewDuration = 3; // duration in const bool reverseColorCycling = false; // true = reverse color movements const uint8_t brightnessLevels[3] {80, 130, 220}; // 0 - 255, brightness Levels (min, med, max) - index (0-2) will be saved to eeprom uint8_t brightness = brightnessLevels[0]; // default brightness if none saved to eeprom yet / first run +#ifdef FADING + uint8_t fadeDigits = 2; // fade digit segments, 0 = disabled, 1 = only fade out segments turned off, 2 = fade old out and fade new in + uint8_t fadeDots = 2; // fade dots, 0 = disabled, 1 = turn dots off without fading in/out after specidfied time, 2 = fade in and out + uint8_t fadeDelay = 15; // milliseconds between each fading step, 5-25 should work okay-ish +#endif /* End basic appearance config-------------------------------------------------------------------------- */ + /* End of basic config/parameters section */ + /* End of feature/parameter section, unless changing advanced things/modifying the sketch there's absolutely nothing to do further down! */ + /* library, wifi and ntp stuff depending on above config/parameters */ -#include -#include -#include -WiFiUDP ntpUDP; -NTPClient timeClient(ntpUDP, NTPHOST); +#ifdef NODEMCU + #if defined ( USENTP ) && !defined ( USEWIFI ) // enforce USEWIFI when USENTP is defined + #define USEWIFI + #pragma warning "USENTP without USEWIFI, enabling WiFi" + #endif + #ifdef USEWIFI + #include + #include + #endif +#endif + +#ifdef USENTP + #include + WiFiUDP ntpUDP; + NTPClient timeClient(ntpUDP, NTPHOST, 0, 60000); +#endif /* end library stuff */ + +/* setting feature combinations/options */ +#if defined ( FASTFORWARD ) || defined ( CUSTOMHELPER ) + bool firstLoop = true; + #ifdef USERTC + #undef USERTC + #endif + #ifdef USEWIFI + #undef USEWIFI + #endif + #ifdef USENTP + #undef USENTP + #endif + #ifdef AUTODST + #undef AUTODST + #endif +#endif +/* setting feature combinations/options */ + + /* Start of FastLED/clock stuff */ #define LEDSTUFF -#define FASTLED_ESP8266_RAW_PIN_ORDER // this means we'll be using the raw esp8266 pin order -> GPIO_12, which is d6 on nodeMCU -#define LED_PIN 12 - -#define LED_PWR_LIMIT 500 // 500mA - Power limit in mA (voltage is set in setup() to 5v) -#define LED_DIGITS 4 // 4 or 6 digits, HH:MM or HH:MM:SS -#define LED_COUNT 63 // Total number of leds, 103 on Retro 7 Segment Clock v3 - The Final One(s) - 3 LEDs/segment - -#include - -uint8_t markerHSV[3] = { 0, 127, 20 }; // this color will be used to "flag" leds for coloring later on while updating the leds -CRGB leds[LED_COUNT]; -CRGBPalette16 currentPalette; +#ifdef LEDSTUFF + #ifdef NODEMCU + #define FASTLED_ESP8266_RAW_PIN_ORDER // this means we'll be using the raw esp8266 pin order -> GPIO_12, which is d6 on nodeMCU + #define LED_PIN 12 // led data in connected to GPIO_12 (d6/nodeMCU) + #else + #define FASTLED_ALLOW_INTERRUPTS 0 // AVR + WS2812 + IRQ = https://github.com/FastLED/FastLED/wiki/Interrupt-problems + #define LED_PIN 6 // led data in connected to d6 (arduino) + #endif + + #define LED_PWR_LIMIT 500 // 500mA - Power limit in mA (voltage is set in setup() to 5v) + #define LED_DIGITS 4 // 4 or 6 digits, HH:MM or HH:MM:SS + #define LED_COUNT 103 // Total number of leds, 103 on Retro 7 Segment Clock v3 - The Final One(s) - 3 LEDs/segment + #if ( LED_DIGITS == 6 ) + #define LED_COUNT 157 // leds on the 6 digit version + #endif + + #include + + uint8_t markerHSV[3] = { 0, 127, 20 }; // this color will be used to "flag" leds for coloring later on while updating the leds + CRGB leds[LED_COUNT]; + CRGBPalette16 currentPalette; +#endif // start clock specific config/parameters /* Segment order, seen from the front: < A > - /\ /\ - F B - \/ \/ + /\ /\ + F B + \/ \/ < G > - /\ /\ - E C - \/ \/ + /\ /\ + E C + \/ \/ < D > - digit positions, seen from the front: - _ _ _ _ _ _ - |_| |_| |_| |_| |_| |_| - |_| |_| |_| |_| |_| |_| +digit positions, seen from the front: + _ _ _ _ _ _ +|_| |_| |_| |_| |_| |_| +|_| |_| |_| |_| |_| |_| - 0 1 2 3 4 5 + 0 1 2 3 4 5 - Note: Digit positions for showSegments() depends on the order in which the segments - are defined in segGroups[] below. Most of my things/clocks published so far start - from the right side when seen from the front, TFO from the left. Others may have different - orders, like Lazy 7 - QBE, which is using a single strip and has an order of - 3, 0, 2, 1 for top left, top right, bottom left, bottom right. +Note: Digit positions for showSegments() depends on the order in which the segments +are defined in segGroups[] below. Most of my things/clocks published so far start +from the right side when seen from the front, TFO from the left. Others may have different +orders, like Lazy 7 - QBE, which is using a single strip and has an order of +3, 0, 2, 1 for top left, top right, bottom left, bottom right. - "The Final One(s)" is starting from the left when looking at the front, so it's - exactly the reverse order of the old/other ones. This doesn't really matter, that's - what "digitPositions" a few lines below is for... +"The Final One(s)" is starting from the left when looking at the front, so it's +exactly the reverse order of the old/other ones. This doesn't really matter, that's +what "digitPositions" a few lines below is for... */ @@ -143,62 +315,92 @@ CRGBPalette16 currentPalette; The order of digits/strip routing doesn't really matter there, positions of HH:MM:SS are assigned using digitPositions. - digitsLAM -> LED_ACCESS_MODE per digit - +digitsLAM -> LED_ACCESS_MODE per digit + */ // defining access modes for each digit individually uint8_t digitsLAM[6] = { 1, 1, 1, 1, 1, 1 }; #if ( LED_DIGITS == 4 ) -const uint8_t digitPositions[4] = { 0, 1, 2, 3 }; // positions of HH:MM (3, 0, 2, 1 on L7-QBE) -const uint16_t segGroups[28][2] PROGMEM = { + const uint8_t digitPositions[4] = { 0, 1, 2, 3 }; // positions of HH:MM (3, 0, 2, 1 on L7-QBE) + const uint16_t segGroups[28][2] PROGMEM = { +#endif + +#if ( LED_DIGITS == 6 ) + const uint8_t digitPositions[6] = { 0, 1, 2, 3, 4, 5 }; // positions of HH:MM:SS + const uint16_t segGroups[42][2] PROGMEM = { #endif /* segments 0-27, 4 digits x 7 segments */ /* digit position 0 */ - { 8, 16}, // top, a - {24, 1}, // top right, b - {10, 18}, // bottom right, c - { 3, 26}, // bottom, d - {19, 11}, // bottom left, e - { 2, 25}, // top left, f - {17, 9}, // center, g + { 6, 8 }, // top, a + { 3, 5 }, // top right, b + { 20, 22 }, // bottom right, c + { 17, 19 }, // bottom, d + { 14, 16 }, // bottom left, e + { 9, 11 }, // top left, f + { 0, 2 }, // center, g /* digit position 1 */ - {32, 40}, // top, a - {48, 33}, // top right, b - {42, 50}, // bottom right, c - {43, 58}, // bottom, d - {59, 51}, // bottom left, e - {34, 57}, // top left, f - {49, 41}, // center, g + { 40, 42 }, // top, a + { 37, 39 }, // top right, b + { 32, 34 }, // bottom right, c + { 29, 31 }, // bottom, d + { 26, 28 }, // bottom left, e + { 43, 45 }, // top left, f + { 46, 48 }, // center, g /* digit position 2 */ - { 4, 12}, // top, a - {20, 5}, // top right, b - {14, 22}, // bottom right, c - {15, 30}, // bottom, d - {31, 23}, // bottom left, e - { 6, 29}, // top left, f - {21, 13}, // center, g + { 60, 62 }, // top, a + { 57, 59 }, // top right, b + { 74, 76 }, // bottom right, c + { 71, 73 }, // bottom, d + { 68, 70 }, // bottom left, e + { 63, 65 }, // top left, f + { 54, 56 }, // center, g /* digit position 3 */ - {44, 52}, // top, a - {60, 37}, // top right, b - {46, 54}, // bottom right, c - {39, 62}, // bottom, d - {55, 47}, // bottom left, e - {38, 61}, // top left, f - {53, 45} // center, g + { 94, 96 }, // top, a + { 91, 93 }, // top right, b + { 86, 88 }, // bottom right, c + { 83, 85 }, // bottom, d + { 80, 82 }, // bottom left, e + { 97, 99 }, // top left, f + { 100, 102 } // center, g +#if ( LED_DIGITS == 6 ) // add two digits, 14 segments, only used if LED_DIGITS is 6... + /* segments 28-41, 6 digits x 7 segments */ + /* (bogus on some models which don't support 6 digits) */ + /* digit position 4 */ + ,{ 114, 116 }, // top, a !! do not remove the "," at the start of this line !! + { 111, 113 }, // top right, b + { 128, 130 }, // bottom right, c + { 125, 127 }, // bottom, d + { 122, 124 }, // bottom left, e + { 117, 119 }, // top left, f + { 108, 110 }, // center, g + /* digit position 5 */ + { 148, 150 }, // top, a + { 145, 147 }, // top right, b + { 140, 142 }, // bottom right, c + { 137, 139 }, // bottom, d + { 134, 136 }, // bottom left, e + { 151, 153 }, // top left, f + { 154, 156 } // center, g +#endif // ...end of digits 5+6 }; #if ( LED_DIGITS == 4 ) -const uint16_t upperDots[2] PROGMEM = {2}; // leds inside the upper dots (right on L7-QBE) -const uint16_t lowerDots[2] PROGMEM = {2}; // leds inside the lower dots (left on L7-QBE) + const uint16_t upperDots[2] PROGMEM = { 49, 50 }; // leds inside the upper dots (right on L7-QBE) + const uint16_t lowerDots[2] PROGMEM = { 52, 53 }; // leds inside the lower dots (left on L7-QBE) +#endif + +#if ( LED_DIGITS == 6 ) + const uint16_t upperDots[4] PROGMEM = { 49, 50, 103, 104 }; // all the leds inside the upper dots (bogus values on some models which don't support 6 digits) + const uint16_t lowerDots[4] PROGMEM = { 52, 53, 106, 107 }; // all the leds inside the lower dots (bogus values on some models which don't support 6 digits) #endif // Using above arrays it's very easy to "talk" to the segments. Simply use 0-6 for the first 7 segments, add 7 (7-13) for the second one, 14-20 for third.... const uint8_t digits[21][7] PROGMEM = { - /* Lets define 10 numbers (0-9) with 7 segments each, also adding some letters - 1 = segment is on, 0 = segment is off */ +/* Lets define 10 numbers (0-9) with 7 segments each, also adding some letters + 1 = segment is on, 0 = segment is off */ { 1, 1, 1, 1, 1, 1, 0 }, // 0 -> Show segments a - f, don't show g (center one) { 0, 1, 1, 0, 0, 0, 0 }, // 1 -> Show segments b + c (top right and bottom right), nothing else { 1, 1, 0, 1, 1, 0, 1 }, // 2 -> and so on... @@ -223,7 +425,7 @@ const uint8_t digits[21][7] PROGMEM = { }; uint8_t clockStatus = 1; // Used for various things, don't mess around with it! 1 = startup -// 0 = regular mode, 1 = startup, 9x = setup modes (90, 91, 92, 93...) + // 0 = regular mode, 1 = startup, 9x = setup modes (90, 91, 92, 93...) /* these values will be saved to EEPROM: 0 = index for selected palette @@ -243,101 +445,200 @@ uint8_t btnRepeatCounter = 0; // keeps track of how often a button press void setup() { -#ifdef DEBUG - while ( millis() < 300 ) { // safety delay for serial output - yield(); - } - Serial.begin(74880); Serial.println(F("  ")); -#ifdef SKETCHNAME - Serial.print(SKETCHNAME); Serial.println(F(" starting up...")); -#endif -#ifdef CLOCKNAME - Serial.print("Clock Type: "); Serial.println(CLOCKNAME); -#endif - Serial.print(F("LED power limit: ")); Serial.print(LED_PWR_LIMIT); Serial.println(F(" mA")); - Serial.print(F("Total LED count: ")); Serial.println(LED_COUNT); - Serial.print(F("LED digits: ")); Serial.println(LED_DIGITS); - Serial.println(F("autoDST enabled")); - Serial.println(F("Configured for nodeMCU")); - Serial.println(F("WiFi enabled")); - Serial.print(F("NTP enabled, NTPHOST: ")); Serial.println(NTPHOST); - while ( millis() < 600 ) { // safety delay for serial output - yield(); - } -#endif + #ifdef DEBUG + while ( millis() < 300 ) { // safety delay for serial output + #ifdef NODEMCU + yield(); + #endif + } + #ifdef NODEMCU + Serial.begin(74880); Serial.println(F("  ")); + #else + Serial.begin(57600); Serial.println(F("  ")); + #endif + #ifdef SKETCHNAME + Serial.print(SKETCHNAME); Serial.println(F(" starting up...")); + #endif + #ifdef CLOCKNAME + Serial.print("Clock Type: "); Serial.println(CLOCKNAME); + #endif + #ifdef RTCTYPE + Serial.print(F("Configured RTC: ")); Serial.println(RTCTYPE); + #endif + #ifdef LEDSTUFF + Serial.print(F("LED power limit: ")); Serial.print(LED_PWR_LIMIT); Serial.println(F(" mA")); + Serial.print(F("Total LED count: ")); Serial.println(LED_COUNT); + Serial.print(F("LED digits: ")); Serial.println(LED_DIGITS); + #endif + #ifdef AUTODST + Serial.println(F("autoDST enabled")); + #endif + #ifdef NODEMCU + Serial.println(F("Configured for nodeMCU")); + #ifdef USEWIFI + Serial.println(F("WiFi enabled")); + #endif + #ifdef USENTP + Serial.print(F("NTP enabled, NTPHOST: ")); Serial.println(NTPHOST); + #endif + #else + Serial.println(F("Configured for Arduino")); + #endif + #ifdef FASTFORWARD + Serial.println(F("!! FASTFORWARD defined !!")); + #endif + while ( millis() < 600 ) { // safety delay for serial output + #ifdef NODEMCU + yield(); + #endif + } + #endif + + #ifdef AUTOBRIGHTNESS + #ifdef DEBUG + Serial.print(F("autoBrightness enabled, LDR using pin: ")); Serial.println(pinLDR); + #endif + pinMode(pinLDR, INPUT); + #endif + pinMode(buttonA, INPUT_PULLUP); pinMode(buttonB, INPUT_PULLUP); -#ifdef DEBUG - if ( digitalRead(buttonA) == LOW || digitalRead(buttonB) == LOW ) { - if ( digitalRead(buttonA) == LOW ) { - Serial.println(F("buttonA is LOW / pressed - check wiring!")); + #ifdef DEBUG + if ( digitalRead(buttonA) == LOW || digitalRead(buttonB) == LOW ) { + if ( digitalRead(buttonA) == LOW ) { + Serial.println(F("buttonA is LOW / pressed - check wiring!")); + } + if ( digitalRead(buttonB) == LOW ) { + Serial.println(F("buttonB is LOW / pressed - check wiring!")); + } } - if ( digitalRead(buttonB) == LOW ) { - Serial.println(F("buttonB is LOW / pressed - check wiring!")); - } - } -#endif + #endif - FastLED.addLeds(leds, LED_COUNT).setCorrection(TypicalSMD5050).setTemperature(DirectSunlight).setDither(1); - FastLED.setMaxPowerInVoltsAndMilliamps(5, LED_PWR_LIMIT); - FastLED.clear(); - FastLED.show(); - Serial.println(F("setup(): Lighting up some leds...")); - for ( uint8_t i = 0; i < LED_DIGITS; i++ ) { - showSegment(6, i); - } - FastLED.show(); - - Serial.println(F("Starting up WiFi...")); - WiFi.mode(WIFI_STA); // set WiFi mode to STA... - WiFi.begin(wifiSSID, wifiPWD); // ...or credentials defined in the USEWIFI config section - Serial.println(F("Using credentials from sketch")); -} -unsigned long startTimer = millis(); -uint8_t wlStatus = 0; -uint8_t counter = 6; -Serial.print(F("Waiting for WiFi connection...")); -while ( wlStatus == 0 ) { - if ( WiFi.status() != WL_CONNECTED ) wlStatus = 0; else wlStatus = 1; - if ( millis() - startTimer >= 1000 ) { + #ifdef LEDSTUFF + FastLED.addLeds(leds, LED_COUNT).setCorrection(TypicalSMD5050).setTemperature(DirectSunlight).setDither(1); + FastLED.setMaxPowerInVoltsAndMilliamps(5, LED_PWR_LIMIT); FastLED.clear(); - showDigit(counter, digitPositions[3]); FastLED.show(); - if ( counter > 0 ) counter--; else wlStatus = 2; - startTimer = millis(); - Serial.print(F(".")); - } - yield(); -} -if ( WiFi.status() == WL_CONNECTED ) { // if status is connected... // ...and USENTP defined... - timeClient.begin(); // ...start timeClient -} -Serial.println(); -if ( WiFi.status() != 0 ) { - Serial.print(F("setup(): Connected to SSID: ")); Serial.println(WiFi.SSID()); -} else Serial.println(F("setup(): WiFi connection failed.")); + #ifdef CUSTOMHELPER // customHelper() will run in a loop if defined! + while ( 1 > 0 ) { + customHelper(); + } + #endif + #ifdef DEBUG + Serial.println(F("setup(): Lighting up some leds...")); + #endif + for ( uint8_t i = 0; i < LED_DIGITS; i++ ) { + showSegment(6, i); + } + FastLED.show(); + #endif -Serial.println(F("setup(): RTC.begin(), 2 second safety delay before")); -Serial.println(F(" doing any read/write actions!")); - yield(); -} + #ifdef NODEMCU // if building for nodeMCU... + #ifdef USEWIFI // ...and if using WiFi..... + #ifdef DEBUG + Serial.println(F("Starting up WiFi...")); + #endif + WiFi.mode(WIFI_STA); // set WiFi mode to STA... + if ( useWPS ) { + WiFi.begin(WiFi.SSID().c_str(),WiFi.psk().c_str()); // ...and start connecting using saved credentials... + #ifdef DEBUG + Serial.println(F("Using WPS setup / saved credentials")); + #endif + } else { + WiFi.begin(wifiSSID, wifiPWD); // ...or credentials defined in the USEWIFI config section + #ifdef DEBUG + Serial.println(F("Using credentials from sketch")); + #endif + } + unsigned long startTimer = millis(); + uint8_t wlStatus = 0; + uint8_t counter = 6; + #ifdef DEBUG + Serial.print(F("Waiting for WiFi connection... ")); + #endif + while ( wlStatus == 0 ) { + if ( WiFi.status() != WL_CONNECTED ) wlStatus = 0; else wlStatus = 1; + #ifdef LEDSTUFF + if ( millis() - startTimer >= 1000 ) { + FastLED.clear(); + showDigit(counter, digitPositions[3]); + FastLED.show(); + if ( counter > 0 ) counter--; else wlStatus = 2; + startTimer = millis(); + #ifdef DEBUG + Serial.print(F(".")); + #endif + } + #endif + #ifdef NODEMCU + yield(); + #endif + } + if ( WiFi.status() == WL_CONNECTED ) { // if status is connected... + #ifdef USENTP // ...and USENTP defined... + timeClient.begin(); // ...start timeClient + #endif + } + #ifdef DEBUG + Serial.println(); + if ( WiFi.status() != 0 ) { + Serial.print(F("setup(): Connected to SSID: ")); Serial.println(WiFi.SSID()); + } else Serial.println(F("setup(): WiFi connection failed.")); + #endif + #endif + EEPROM.begin(512); + #endif -FastLED.clear(); -FastLED.show(); + #ifdef USERTC + Rtc.Begin(); + #ifdef DEBUG + Serial.println(F("setup(): RTC.begin(), 2 second safety delay before")); + Serial.println(F(" doing any read/write actions!")); + #endif + unsigned long tmp_time = millis(); + while ( millis() - tmp_time < 2000 ) { + #ifdef NODEMCU + yield(); + #endif + } + #ifdef DEBUG + Serial.println(F("setup(): RTC initialized")); + #endif + #else + #ifdef DEBUG + Serial.println(F("setup(): No RTC defined!")); + #endif + #endif -paletteSwitcher(); -brightnessSwitcher(); -colorModeSwitcher(); -displayModeSwitcher(); + #ifdef LEDSTUFF + FastLED.clear(); + FastLED.show(); + /* eeprom settings */ + #ifdef nodeMCU + EEPROM.begin(512); + #endif + paletteSwitcher(); + brightnessSwitcher(); + colorModeSwitcher(); + displayModeSwitcher(); + #endif -syncHelper(); + #ifdef FASTFORWARD + setTime(21, 59, 50, 30, 6, 2021); // h, m, s, d, m, y to set the clock to when using FASTFORWARD + #endif -clockStatus = 0; // change from 1 (startup) to 0 (running mode) + #ifdef USENTP + syncHelper(); + #endif -printTime(); -Serial.println(F("setup() done")); -Serial.println(F("------------------------------------------------------")); + clockStatus = 0; // change from 1 (startup) to 0 (running mode) + + #ifdef DEBUG + printTime(); + Serial.println(F("setup() done")); + Serial.println(F("------------------------------------------------------")); + #endif } @@ -349,151 +650,151 @@ void loop() { static uint8_t lastSecondDisplayed = 0; // This keeps track of the last second when the display was updated (HH:MM and HH:MM:SS) static unsigned long lastCheckRTC = millis(); // This will be used to read system time in case no RTC is defined (not supported!) static bool doUpdate = false; // Update led content whenever something sets this to true. Coloring will always happen at fixed intervals! -#ifdef USERTC - static RtcDateTime rtcTime = Rtc.GetDateTime().Epoch32Time(); // Get time from rtc (epoch) -#else - static time_t sysTime = now(); // if no rtc is defined, get local system time -#endif -#ifdef LEDSTUFF - static uint8_t refreshDelay = 5; // refresh leds every 5ms - static long lastRefresh = millis(); // Keeps track of the last led update/FastLED.show() inside the loop -#ifdef AUTOBRIGHTNESS - static long lastReadLDR = millis(); -#endif -#endif -#ifdef FASTFORWARD - static unsigned long lastFFStep = millis(); // Keeps track of last time increment if FASTFORWARD is defined -#endif - + #ifdef USERTC + static RtcDateTime rtcTime = Rtc.GetDateTime().Epoch32Time(); // Get time from rtc (epoch) + #else + static time_t sysTime = now(); // if no rtc is defined, get local system time + #endif + #ifdef LEDSTUFF + static uint8_t refreshDelay = 5; // refresh leds every 5ms + static long lastRefresh = millis(); // Keeps track of the last led update/FastLED.show() inside the loop + #ifdef AUTOBRIGHTNESS + static long lastReadLDR = millis(); + #endif + #endif + #ifdef FASTFORWARD + static unsigned long lastFFStep = millis(); // Keeps track of last time increment if FASTFORWARD is defined + #endif + if ( lastInput != 0 ) { // If any button press is detected... if ( btnRepeatCounter < 1 ) { // execute short/single press function(s) -#ifdef DEBUG - Serial.print(F("loop(): ")); Serial.print(lastInput); Serial.println(F(" (short press)")); -#endif + #ifdef DEBUG + Serial.print(F("loop(): ")); Serial.print(lastInput); Serial.println(F(" (short press)")); + #endif if ( lastInput == 1 ) { // short press button A -#ifdef LEDSTUFF - brightnessSwitcher(); -#endif + #ifdef LEDSTUFF + brightnessSwitcher(); + #endif } if ( lastInput == 2 ) { // short press button B -#ifdef LEDSTUFF - paletteSwitcher(); -#endif + #ifdef LEDSTUFF + paletteSwitcher(); + #endif } if ( lastInput == 3 ) { // short press button A + button B } } else if ( btnRepeatCounter > 8 ) { // execute long press function(s)... btnRepeatCounter = 1; // ..reset btnRepeatCounter to stop this from repeating -#ifdef DEBUG - Serial.print(F("loop(): ")); Serial.print(lastInput); Serial.println(F(" (long press)")); -#endif + #ifdef DEBUG + Serial.print(F("loop(): ")); Serial.print(lastInput); Serial.println(F(" (long press)")); + #endif if ( lastInput == 1 ) { // long press button A -#ifdef LEDSTUFF - colorModeSwitcher(); -#endif + #ifdef LEDSTUFF + colorModeSwitcher(); + #endif } if ( lastInput == 2 ) { // long press button B -#ifdef LEDSTUFF - displayModeSwitcher(); -#endif + #ifdef LEDSTUFF + displayModeSwitcher(); + #endif } if ( lastInput == 3) { // long press button A + button B -#ifdef USEWIFI // if USEWIFI is defined and... - if ( useWPS ) { // ...if useWPS is true... - connectWPS(); // connect WiFi using WPS - } -#else // if USEWIFI is not defined... -#ifdef LEDSTUFF - FastLED.clear(); - FastLED.show(); - setupClock(); // start date/time setup -#endif -#endif + #ifdef USEWIFI // if USEWIFI is defined and... + if ( useWPS ) { // ...if useWPS is true... + connectWPS(); // connect WiFi using WPS + } + #else // if USEWIFI is not defined... + #ifdef LEDSTUFF + FastLED.clear(); + FastLED.show(); + setupClock(); // start date/time setup + #endif + #endif } while ( digitalRead(buttonA) == LOW || digitalRead(buttonB) == LOW ) { // wait until buttons are released again -#ifdef LEDSTUFF - if ( millis() % 50 == 0 ) { // Refresh leds every 50ms to give optical feedback - colorizeOutput(colorMode); - FastLED.show(); - } -#endif -#ifdef NODEMCU - yield(); -#endif + #ifdef LEDSTUFF + if ( millis() % 50 == 0 ) { // Refresh leds every 50ms to give optical feedback + colorizeOutput(colorMode); + FastLED.show(); + } + #endif + #ifdef NODEMCU + yield(); + #endif } } } - -#ifdef FASTFORWARD // if FASTFORWARD is defined... - if ( millis() - lastFFStep >= 250 ) { // ...and 250ms have passed... - adjustTime(5); // ...add 5 seconds to current time - lastFFStep = millis(); - } -#endif + + #ifdef FASTFORWARD // if FASTFORWARD is defined... + if ( millis() - lastFFStep >= 250 ) { // ...and 250ms have passed... + adjustTime(5); // ...add 5 seconds to current time + lastFFStep = millis(); + } + #endif if ( millis() - lastCheckRTC >= 50 ) { // check rtc/system time every 50ms -#ifdef USERTC - rtcTime = Rtc.GetDateTime().Epoch32Time(); - if ( lastSecondDisplayed != second(rtcTime) ) doUpdate = true; -#else - sysTime = now(); - if ( lastSecondDisplayed != second(sysTime) ) doUpdate = true; -#endif + #ifdef USERTC + rtcTime = Rtc.GetDateTime().Epoch32Time(); + if ( lastSecondDisplayed != second(rtcTime) ) doUpdate = true; + #else + sysTime = now(); + if ( lastSecondDisplayed != second(sysTime) ) doUpdate = true; + #endif lastCheckRTC = millis(); } if ( doUpdate ) { // this will update the led array if doUpdate is true because of a new second from the rtc -#ifdef USERTC - setTime(rtcTime); // sync system time to rtc every second -#ifdef LEDSTUFF - FastLED.clear(); // 1A - clear all leds... - displayTime(rtcTime); // 2A - output rtcTime to the led array.. -#endif - lastSecondDisplayed = second(rtcTime); -#else -#ifdef LEDSTUFF - FastLED.clear(); // 1B - clear all leds... - displayTime(sysTime); // 2B - output sysTime to the led array... -#endif - lastSecondDisplayed = second(sysTime); -#endif -#ifdef CUSTOMDISPLAY - displayMyStuff(); // 3AB - if customDisplay is defined this will clear the led array again to display custom values... -#endif + #ifdef USERTC + setTime(rtcTime); // sync system time to rtc every second + #ifdef LEDSTUFF + FastLED.clear(); // 1A - clear all leds... + displayTime(rtcTime); // 2A - output rtcTime to the led array.. + #endif + lastSecondDisplayed = second(rtcTime); + #else + #ifdef LEDSTUFF + FastLED.clear(); // 1B - clear all leds... + displayTime(sysTime); // 2B - output sysTime to the led array... + #endif + lastSecondDisplayed = second(sysTime); + #endif + #ifdef CUSTOMDISPLAY + displayMyStuff(); // 3AB - if customDisplay is defined this will clear the led array again to display custom values... + #endif doUpdate = false; -#ifdef DEBUG - if ( second() % 20 == 0 ) { - printTime(); - } -#endif -#ifdef USENTP // if NTP is enabled, resync to ntp server at 0:00:00 utc - if ( hour() == 0 && minute() == 0 and second() == 0 ) { - syncHelper(); - } -#endif + #ifdef DEBUG + if ( second() % 20 == 0 ) { + printTime(); + } + #endif + #ifdef USENTP // if NTP is enabled, resync to ntp server at 0:00:00 utc + if ( hour() == 0 && minute() == 0 and second() == 0 ) { + syncHelper(); + } + #endif } -#ifdef LEDSTUFF - colorizeOutput(colorMode); // 1C, 2C, 3C...colorize the data inside the led array right now... -#ifdef AUTOBRIGHTNESS - if ( millis() - lastReadLDR >= intervalLDR ) { // if LDR is enabled and sample interval has been reached... - readLDR(); // ...call readLDR(); - if ( abs(avgLDR - lastAvgLDR) >= 5 ) { // if avgLDR has changed for more than +/- 5 update lastAvgLDR - lastAvgLDR = avgLDR; - FastLED.setBrightness(avgLDR); + #ifdef LEDSTUFF + colorizeOutput(colorMode); // 1C, 2C, 3C...colorize the data inside the led array right now... + #ifdef AUTOBRIGHTNESS + if ( millis() - lastReadLDR >= intervalLDR ) { // if LDR is enabled and sample interval has been reached... + readLDR(); // ...call readLDR(); + if ( abs(avgLDR - lastAvgLDR) >= 5 ) { // if avgLDR has changed for more than +/- 5 update lastAvgLDR + lastAvgLDR = avgLDR; + FastLED.setBrightness(avgLDR); + } + lastReadLDR = millis(); + } + #endif + #ifdef FADING + digitsFader(); + dotsFader(); + #endif + if ( millis() - lastRefresh >= refreshDelay ) { + FastLED.show(); + lastRefresh = millis(); } - lastReadLDR = millis(); - } -#endif -#ifdef FADING - digitsFader(); - dotsFader(); -#endif - if ( millis() - lastRefresh >= refreshDelay ) { - FastLED.show(); - lastRefresh = millis(); - } -#endif + #endif lastInput = inputButtons(); } @@ -505,37 +806,37 @@ void loop() { #ifdef LEDSTUFF #ifdef CUSTOMDISPLAY -void displayMyStuff() { + void displayMyStuff() { /* One way to display custom sensor data/other things. displayMyStuff() is then called inside the doUpdate if statement inside void loop() - after updating the leds but before calling colorizeOutput() and FastLED.show() */ - if ( second() >= 30 && second() < 40 ) { // only do something if current second is 30-39 -#ifdef RTC_DS3231 // if DS3231 is used we can read the temperature from that for demo purposes here - float rtcTemp = Rtc.GetTemperature().AsFloatDegC(); // get temperature in °C as float (25.75°C).... - uint8_t tmp = round(rtcTemp); // ...and round (26°C) -#else - uint8_t tmp = 99; // get whatever value from whatever sensor into tmp -#endif - FastLED.clear(); - if ( LED_DIGITS == 4 ) { // if 4 digits, display following content: - showDigit(tmp / 10, digitPositions[0]); // tmp (26°C) / 10 = 2 on position 1 of HH - showDigit(tmp % 10, digitPositions[1]); // tmp (26°C) % 10 = 6 on position 2 of HH - showDigit(18, digitPositions[2]); // ° symbol from array digits[][] on position 1 of MM - showDigit(14, digitPositions[3]); // C from array digits[][] on position 2 of MM - } - if ( LED_DIGITS == 6 ) { // if 6 digits.... - showDigit(tmp / 10, digitPositions[2]); // ...do the above using MM:SS positions instead of HH:MM - showDigit(tmp % 10, digitPositions[3]); - showDigit(18, digitPositions[4]); - showDigit(14, digitPositions[5]); + if ( second() >= 30 && second() < 40 ) { // only do something if current second is 30-39 + #ifdef RTC_DS3231 // if DS3231 is used we can read the temperature from that for demo purposes here + float rtcTemp = Rtc.GetTemperature().AsFloatDegC(); // get temperature in °C as float (25.75°C).... + uint8_t tmp = round(rtcTemp); // ...and round (26°C) + #else + uint8_t tmp = 99; // get whatever value from whatever sensor into tmp + #endif + FastLED.clear(); + if ( LED_DIGITS == 4 ) { // if 4 digits, display following content: + showDigit(tmp / 10, digitPositions[0]); // tmp (26°C) / 10 = 2 on position 1 of HH + showDigit(tmp % 10, digitPositions[1]); // tmp (26°C) % 10 = 6 on position 2 of HH + showDigit(18, digitPositions[2]); // ° symbol from array digits[][] on position 1 of MM + showDigit(14, digitPositions[3]); // C from array digits[][] on position 2 of MM + } + if ( LED_DIGITS == 6 ) { // if 6 digits.... + showDigit(tmp / 10, digitPositions[2]); // ...do the above using MM:SS positions instead of HH:MM + showDigit(tmp % 10, digitPositions[3]); + showDigit(18, digitPositions[4]); + showDigit(14, digitPositions[5]); + } } } -} #endif #ifdef FADING void fadeSegment(uint8_t pos, uint8_t segment, uint8_t amount, uint8_t fadeType) { - /* this will check if the first led of a given segment is lit and if it is, will fade by + /* this will check if the first led of a given segment is lit and if it is, will fade by amount using fadeType. fadeType is important because when fading things in that where off previously we must avoid setting them black at first - hence fadeLightBy instead of fadeToBlack. */ @@ -586,21 +887,21 @@ void digitsFader() { } if ( currentSegments[digitPos][segmentPos] != previousSegments[digitPos][segmentPos] ) { // ...and compare them to the previous displayed segments. active = true; // if a change has been detected, set active = true so fading gets executed -#ifdef DEBUG - Serial.print(F("digitPos: ")); Serial.print(digitPos); - Serial.print(F(" - segmentPos: ")); Serial.print(segmentPos); - Serial.print(F(" was ")); -#endif + #ifdef DEBUG + Serial.print(F("digitPos: ")); Serial.print(digitPos); + Serial.print(F(" - segmentPos: ")); Serial.print(segmentPos); + Serial.print(F(" was ")); + #endif if ( currentSegments[digitPos][segmentPos] == 0 ) { changedSegments[digitPos][segmentPos] = 1; -#ifdef DEBUG - Serial.println(F("ON, is now OFF")); -#endif + #ifdef DEBUG + Serial.println(F("ON, is now OFF")); + #endif } else { changedSegments[digitPos][segmentPos] = 2; -#ifdef DEBUG - Serial.println(F("OFF, is now ON")); -#endif + #ifdef DEBUG + Serial.println(F("OFF, is now ON")); + #endif } } } @@ -646,11 +947,11 @@ void digitsFader() { changedSegments[digitPos][segmentPos] = 0; } } -#ifdef DEBUG - Serial.print(F("digit fading sequence took ")); // for debugging/checking duration - fading should never take longer than 1000ms! - Serial.print(millis() - firstRun); - Serial.println(F(" ms")); -#endif + #ifdef DEBUG + Serial.print(F("digit fading sequence took ")); // for debugging/checking duration - fading should never take longer than 1000ms! + Serial.print(millis() - firstRun); + Serial.println(F(" ms")); + #endif } } } @@ -698,11 +999,11 @@ void dotsFader() { if ( counter > fadeSteps ) { counter = 1; fadeInDone = true; -#ifdef DEBUG - Serial.print(F("dot fade-in sequence took ")); // for debugging/checking - Serial.print(millis() - firstRun); - Serial.println(F(" ms")); -#endif + #ifdef DEBUG + Serial.print(F("dot fade-in sequence took ")); // for debugging/checking + Serial.print(millis() - firstRun); + Serial.println(F(" ms")); + #endif } } if ( lastRun - firstRun >= 950 - fadeDelay * fadeSteps ) { @@ -720,11 +1021,11 @@ void dotsFader() { counter = 1; active = false; fadeInDone = false; -#ifdef DEBUG - Serial.print(F("dot fading sequence took ")); // for debugging/checking - Serial.print(millis() - firstRun); - Serial.println(F(" ms")); -#endif + #ifdef DEBUG + Serial.print(F("dot fading sequence took ")); // for debugging/checking + Serial.print(millis() - firstRun); + Serial.println(F(" ms")); + #endif } } } @@ -741,85 +1042,84 @@ void readLDR() { if (runCounter == 5) { avgLDR = ( tmp / 5 ) * factorLDR; tmp = 0; runCounter = 0; -#ifdef DEBUG - if ( dbgLDR ) { - Serial.print(F("readLDR(): avgLDR value: ")); - Serial.print(avgLDR); - } -#endif + #ifdef DEBUG + if ( dbgLDR ) { + Serial.print(F("readLDR(): avgLDR value: ")); + Serial.print(avgLDR); + } + #endif if ( avgLDR < minBrightness ) avgLDR = minBrightness; if ( avgLDR > brightness ) avgLDR = brightness; if ( avgLDR >= upperLimitLDR && avgLDR < brightness ) avgLDR = brightness; // if avgLDR is above upperLimitLDR switch to max current brightness if ( avgLDR <= lowerLimitLDR ) avgLDR = minBrightness; // if avgLDR is below lowerLimitLDR switch to minBrightness -#ifdef DEBUG - if ( dbgLDR ) { - Serial.print(F(" - adjusted to: ")); - Serial.println(avgLDR); - } -#endif + #ifdef DEBUG + if ( dbgLDR ) { + Serial.print(F(" - adjusted to: ")); + Serial.println(avgLDR); + } + #endif } runCounter++; } #endif void setupClock() { - /* This sets time and date (if AUTODST is defined) on the clock/rtc */ +/* This sets time and date (if AUTODST is defined) on the clock/rtc */ clockStatus = 90; // clockStatus 9x = setup, relevant for other functions/coloring while ( digitalRead(buttonA) == LOW || digitalRead(buttonB) == LOW ) { // do nothing until both buttons are released to avoid accidental inputs right away -#ifdef NODEMCU - yield(); -#endif + #ifdef NODEMCU + yield(); + #endif } tmElements_t setupTime; // Create a time element which will be used. Using the current time would setupTime.Hour = 12; // give some problems (like time still running while setting hours/minutes) setupTime.Minute = 0; // Setup starts at 12 (12 pm) (utc 12 if AUTODST is defined) - setupTime.Second = 0; // + setupTime.Second = 0; // setupTime.Day = 8; // date settings only used when AUTODST is defined, but will set them anyways setupTime.Month = 7; // see above setupTime.Year = 21; // current year - 2000 (2021 - 2000 = 21) -#ifdef USERTC - RtcDateTime writeTime; -#endif -#ifdef AUTODST - clockStatus = 91; // 91 = y/m/d setup - uint8_t y, m, d; - y = getUserInput(12, 20, 21, 99); // show Y + blank, get value from 21 - 99 into y - setupTime.Year = y + 30; // 2 digit year + 30 (epoch), so we get offset from 1970 - m = getUserInput(16, 17, 1, 12); // show M, get value from 1 - 12 into m - setupTime.Month = m; - if ( m == 2 ) { - if ( leapYear(y + 2000) ) { // check for leap year... -#ifdef DEBUG // ...and get according day input ranges for each month - Serial.println(F("setupClock(): Leap year detected")); -#endif - d = getUserInput(13, 20, 1, 29); - } else { - d = getUserInput(13, 20, 1, 28); + #ifdef USERTC + RtcDateTime writeTime; + #endif + #ifdef AUTODST + clockStatus = 91; // 91 = y/m/d setup + uint8_t y, m, d; + y = getUserInput(12, 20, 21, 99); // show Y + blank, get value from 21 - 99 into y + setupTime.Year = y + 30; // 2 digit year + 30 (epoch), so we get offset from 1970 + m = getUserInput(16, 17, 1, 12); // show M, get value from 1 - 12 into m + setupTime.Month = m; + if ( m == 2 ) { + if ( leapYear(y + 2000) ) { // check for leap year... + #ifdef DEBUG // ...and get according day input ranges for each month + Serial.println(F("setupClock(): Leap year detected")); + #endif + d = getUserInput(13, 20, 1, 29); + } else { + d = getUserInput(13, 20, 1, 28); + } + } + if ( m == 1 || m == 3 || m == 5 || m == 7 || m == 8 || m == 10 || m == 12 ) { + d = getUserInput(13, 20, 1, 31); } - } - if ( m == 1 || m == 3 || m == 5 || m == 7 || m == 8 || m == 10 || m == 12 ) { - d = getUserInput(13, 20, 1, 31); - } - if ( m == 4 || m == 6 || m == 9 || m == 11 ) { - d = getUserInput(13, 20, 1, 30); - } - setupTime.Day = d; -#ifdef USERTC - writeTime = { 2000 + y, setupTime.Month, setupTime.Day, - setupTime.Hour, setupTime.Minute, setupTime.Second - }; - Rtc.SetDateTime(writeTime); - setTime(makeTime(setupTime)); -#ifdef DEBUG - Serial.println(now()); - Serial.print(F("setupClock(): RTC time/date set to: ")); Serial.println(writeTime); -#endif -#else - setTime(makeTime(setupTime)); -#endif -#else - setupTime.Year = 51; -#endif + if ( m == 4 || m == 6 || m == 9 || m == 11 ) { + d = getUserInput(13, 20, 1, 30); + } + setupTime.Day = d; + #ifdef USERTC + writeTime = { 2000 + y, setupTime.Month, setupTime.Day, + setupTime.Hour, setupTime.Minute, setupTime.Second }; + Rtc.SetDateTime(writeTime); + setTime(makeTime(setupTime)); + #ifdef DEBUG + Serial.println(now()); + Serial.print(F("setupClock(): RTC time/date set to: ")); Serial.println(writeTime); + #endif + #else + setTime(makeTime(setupTime)); + #endif + #else + setupTime.Year = 51; + #endif uint8_t lastInput = 0; // hours while ( lastInput != 2 ) { @@ -865,61 +1165,59 @@ void setupClock() { } lastInput = 0; } -#ifdef DEBUG -#ifdef AUTODST - Serial.print(F("setupClock(): ")); - Serial.print(F("Y/M/D -> ")); - Serial.print(1970 + setupTime.Year); Serial.print(F("/")); - Serial.print(setupTime.Month); Serial.print(F("/")); - Serial.println(setupTime.Day); -#endif - Serial.print(F("setupClock(): ")); - Serial.print(F("HH:MM:SS -> ")); -#ifdef AUTODST - Serial.print(F("AUTODST enabled, setting LOCAL time -> ")); -#endif - if ( setupTime.Hour < 10 ) Serial.print(F("0")); - Serial.print(setupTime.Hour); Serial.print(F(":")); - if ( setupTime.Minute < 10 ) Serial.print(F("0")); - Serial.print(setupTime.Minute); Serial.print(F(":")); - if ( setupTime.Second < 10 ) Serial.print(F("0")); - Serial.println(setupTime.Second); -#endif -#ifdef USERTC - writeTime = { 1970 + setupTime.Year, setupTime.Month, setupTime.Day, - setupTime.Hour, setupTime.Minute, setupTime.Second - }; -#ifdef AUTODST - time_t t = myTimeZone.toUTC(makeTime(setupTime)); // get UTC time from entered time - writeTime = { 1970 + setupTime.Year, month(t), day(t), - hour(t), minute(t), second(t) - }; -#endif - Rtc.SetDateTime(writeTime); - setTime(makeTime(setupTime)); -#ifdef DEBUG - Serial.println(F("setupClock(): RTC time set")); - Serial.println(makeTime(setupTime)); - printTime(); -#endif -#else -#ifdef AUTODST - time_t t = myTimeZone.toUTC(makeTime(setupTime)); // get UTC time from entered time - setTime(t); -#else - setTime(makeTime(setupTime)); -#endif -#endif + #ifdef DEBUG + #ifdef AUTODST + Serial.print(F("setupClock(): ")); + Serial.print(F("Y/M/D -> ")); + Serial.print(1970 + setupTime.Year); Serial.print(F("/")); + Serial.print(setupTime.Month); Serial.print(F("/")); + Serial.println(setupTime.Day); + #endif + Serial.print(F("setupClock(): ")); + Serial.print(F("HH:MM:SS -> ")); + #ifdef AUTODST + Serial.print(F("AUTODST enabled, setting LOCAL time -> ")); + #endif + if ( setupTime.Hour < 10 ) Serial.print(F("0")); + Serial.print(setupTime.Hour); Serial.print(F(":")); + if ( setupTime.Minute < 10 ) Serial.print(F("0")); + Serial.print(setupTime.Minute); Serial.print(F(":")); + if ( setupTime.Second < 10 ) Serial.print(F("0")); + Serial.println(setupTime.Second); + #endif + #ifdef USERTC + writeTime = { 1970 + setupTime.Year, setupTime.Month, setupTime.Day, + setupTime.Hour, setupTime.Minute, setupTime.Second }; + #ifdef AUTODST + time_t t = myTimeZone.toUTC(makeTime(setupTime)); // get UTC time from entered time + writeTime = { 1970 + setupTime.Year, month(t), day(t), + hour(t), minute(t), second(t) }; + #endif + Rtc.SetDateTime(writeTime); + setTime(makeTime(setupTime)); + #ifdef DEBUG + Serial.println(F("setupClock(): RTC time set")); + Serial.println(makeTime(setupTime)); + printTime(); + #endif + #else + #ifdef AUTODST + time_t t = myTimeZone.toUTC(makeTime(setupTime)); // get UTC time from entered time + setTime(t); + #else + setTime(makeTime(setupTime)); + #endif + #endif clockStatus = 0; -#ifdef DEBUG - Serial.println(F("setupClock() done")); -#endif + #ifdef DEBUG + Serial.println(F("setupClock() done")); + #endif } uint16_t getUserInput(uint8_t sym1, uint8_t sym2, uint8_t startVal, uint8_t endVal) { - /* This will show two symbols on HH and allow to enter a 2 digit value using the buttons - and display the value on MM. */ +/* This will show two symbols on HH and allow to enter a 2 digit value using the buttons + and display the value on MM. */ static uint8_t lastInput = 0; static uint8_t currentVal = startVal; static bool newInput = true; @@ -943,30 +1241,30 @@ uint16_t getUserInput(uint8_t sym1, uint8_t sym2, uint8_t startVal, uint8_t endV if ( millis() % 30 == 0 ) { colorizeOutput(colorMode); FastLED.show(); - } + } lastInput = inputButtons(); } -#ifdef DEBUG - Serial.print(F("getUserInput(): returned ")); Serial.println(currentVal); -#endif + #ifdef DEBUG + Serial.print(F("getUserInput(): returned ")); Serial.println(currentVal); + #endif lastInput = 0; newInput = true; return currentVal; -#ifdef DEBUG - Serial.print(F("getUserInput(): returned ")); Serial.println(currentVal); -#endif + #ifdef DEBUG + Serial.print(F("getUserInput(): returned ")); Serial.println(currentVal); + #endif } void colorizeOutput(uint8_t mode) { - /* So far showDigit()/showSegment() only set some leds inside the array to values from "markerHSV" but we haven't updated - the leds yet using FastLED.show(). This function does the coloring of the right now single colored but "insivible" - output. This way color updates/cycles aren't tied to updating display contents */ +/* So far showDigit()/showSegment() only set some leds inside the array to values from "markerHSV" but we haven't updated + the leds yet using FastLED.show(). This function does the coloring of the right now single colored but "insivible" + output. This way color updates/cycles aren't tied to updating display contents */ static unsigned long lastRun = 0; static unsigned long lastColorChange = 0; static uint8_t startColor = 0; static uint8_t colorOffset = 0; // different offsets result in quite different results, depending on the amount of leds inside each segment... - // ...so it's set inside each color mode if required + // ...so it's set inside each color mode if required /* mode 0 = check every segment if it's lit and assign a color based on position -> different color per digit Checking the leds like this will not include the dots - they'll be colored later on */ if ( mode == 0 ) { @@ -1020,7 +1318,7 @@ void colorizeOutput(uint8_t mode) { b = brightnessLevels[0]; } lastBlink = millis(); - } // unset values = red, set value = green, current value = yellow and blinkinkg + } // unset values = red, set value = green, current value = yellow and blinkinkg for ( uint8_t pos = 0; pos < LED_DIGITS; pos++ ) { if ( clockStatus == 91 ) { // Y/M/D setup colorHelper(digitPositions[0], 0, 255, brightness); @@ -1081,11 +1379,11 @@ void colorizeOutput(uint8_t mode) { } } } -#ifdef FASTFORWARD - if ( millis() - lastColorChange > 15 ) { -#else - if ( millis() - lastColorChange > colorSpeed ) { -#endif + #ifdef FASTFORWARD + if ( millis() - lastColorChange > 15 ) { + #else + if ( millis() - lastColorChange > colorSpeed ) { + #endif if ( reverseColorCycling ) { startColor--; } else { @@ -1093,7 +1391,7 @@ void colorizeOutput(uint8_t mode) { } lastColorChange = millis(); } -#ifdef AUTOBRIGHTNESS + #ifdef AUTOBRIGHTNESS if ( nightMode && clockStatus == 0 ) { // nightmode will overwrite everything that has happened so far... for ( uint16_t i = 0; i < LED_COUNT; i++ ) { if ( leds[i] ) { @@ -1106,39 +1404,39 @@ void colorizeOutput(uint8_t mode) { } } } -#endif + #endif - /* // example for time based coloring - // for coloring based on current times the following will get local display time into - // checkTime if autoDST is defined as the clock is running in utc time then - #ifdef AUTODST - time_t checkTime = myTimeZone.toLocal(now()); - #else - time_t checkTime = now(); - #endif +/* // example for time based coloring + // for coloring based on current times the following will get local display time into + // checkTime if autoDST is defined as the clock is running in utc time then + #ifdef AUTODST + time_t checkTime = myTimeZone.toLocal(now()); + #else + time_t checkTime = now(); + #endif - // below if-loop simply checks for a given time and colors everything in green/blue accordingly - if ( hour(checkTime) > 6 && hour(checkTime) <= 22 ) { // if hour > 6 AND hour <= 22 ---> 07:00 - 22:59 - for ( uint16_t i = 0; i < LED_COUNT; i++ ) { // for each position... - if ( leds[i] ) { // ...check led and if it's lit... - leds[i].setHSV(96, 255, brightness); // ...redraw with HSV color 96 -> green - } - } - } else { // ---> 23:00 - 06:59 - for ( uint16_t i = 0; i < LED_COUNT; i++ ) { // for each position... - if ( leds[i] ) { // ...check led and if it's lit... - leds[i].setHSV(160, 255, brightness); // ...redraw with HSV color 160 -> blue - } + // below if-loop simply checks for a given time and colors everything in green/blue accordingly + if ( hour(checkTime) > 6 && hour(checkTime) <= 22 ) { // if hour > 6 AND hour <= 22 ---> 07:00 - 22:59 + for ( uint16_t i = 0; i < LED_COUNT; i++ ) { // for each position... + if ( leds[i] ) { // ...check led and if it's lit... + leds[i].setHSV(96, 255, brightness); // ...redraw with HSV color 96 -> green } } - */ + } else { // ---> 23:00 - 06:59 + for ( uint16_t i = 0; i < LED_COUNT; i++ ) { // for each position... + if ( leds[i] ) { // ...check led and if it's lit... + leds[i].setHSV(160, 255, brightness); // ...redraw with HSV color 160 -> blue + } + } + } +*/ lastRun = millis(); } void colorizeSegment(uint8_t segment, uint8_t pos, uint8_t color) { - /* Checks if segment at position is on - and if it is, assigns color from current palette */ +/* Checks if segment at position is on - and if it is, assigns color from current palette */ uint8_t ledAM = digitsLAM[pos]; // led access mode according to the position if ( leds[pgm_read_word_near(&segGroups[segment + digitPositions[pos] * 7][0])] ) { if ( ledAM == 0 ) { @@ -1158,8 +1456,8 @@ void colorizeSegment(uint8_t segment, uint8_t pos, uint8_t color) { void colorHelper(uint8_t pos, uint8_t hue, uint8_t sat, uint8_t bri) { - /* Used for coloring digits inside setup routines/steps - It will simply set the digit at the given position to the given hsv values */ +/* Used for coloring digits inside setup routines/steps + It will simply set the digit at the given position to the given hsv values */ uint8_t ledAM = digitsLAM[pos]; // led access mode according to the position for ( uint8_t segment = 0; segment < 7; segment++ ) { if ( leds[pgm_read_word_near(&segGroups[segment + pos * 7][0])] ) { // if first led inside segment is lit... @@ -1181,11 +1479,11 @@ void colorHelper(uint8_t pos, uint8_t hue, uint8_t sat, uint8_t bri) { void displayTime(time_t t) { -#ifdef AUTODST - if ( clockStatus < 90 ) { // display adjusted times only while NOT in setup - t = myTimeZone.toLocal(t); // convert display time to local time zone according to rules on top of the sketch - } -#endif + #ifdef AUTODST + if ( clockStatus < 90 ) { // display adjusted times only while NOT in setup + t = myTimeZone.toLocal(t); // convert display time to local time zone according to rules on top of the sketch + } + #endif if ( clockStatus >= 90 ) { FastLED.clear(); } @@ -1247,52 +1545,52 @@ void showSegment(uint8_t segment, uint8_t segDisplay) { // of definitions on the top, first one defined is segDisplay 0, second one is segDisplay 1 and so on... // "firstLoop" is used to display all information only once per test if customHelper is defined uint8_t ledAM = digitsLAM[segDisplay]; // led access mode according to the position -#ifdef DEBUG -#ifdef CUSTOMHELPER - if ( firstLoop ) { - Serial.print(F("LED_ACCESS_MODE for segment ")); Serial.print(segment); - Serial.print(F(" at position ")); Serial.print(segDisplay); - Serial.print(F(" is ")); Serial.print(ledAM); - } -#endif -#endif + #ifdef DEBUG + #ifdef CUSTOMHELPER + if ( firstLoop ) { + Serial.print(F("LED_ACCESS_MODE for segment ")); Serial.print(segment); + Serial.print(F(" at position ")); Serial.print(segDisplay); + Serial.print(F(" is ")); Serial.print(ledAM); + } + #endif + #endif if ( ledAM == 0 ) { // using both values inside the array to light up two leds -#ifdef DEBUG -#ifdef CUSTOMHELPER - if ( firstLoop ) { - Serial.print(F(". Leds ")); - } -#endif -#endif + #ifdef DEBUG + #ifdef CUSTOMHELPER + if ( firstLoop ) { + Serial.print(F(". Leds ")); + } + #endif + #endif segment += segDisplay * 7; for (uint8_t i = 0; i < 2; i++) { leds[pgm_read_word_near(&segGroups[segment][i])].setHSV(markerHSV[0], markerHSV[1], markerHSV[2]); -#ifdef DEBUG -#ifdef CUSTOMHELPER - if ( firstLoop ) { - if ( i == 0 ) { - Serial.print(pgm_read_word_near(&segGroups[segment][i])); Serial.print(F(" and ")); - } - if ( i == 1 ) { - Serial.println(pgm_read_word_near(&segGroups[segment][i])); - } - } -#endif -#endif + #ifdef DEBUG + #ifdef CUSTOMHELPER + if ( firstLoop ) { + if ( i == 0 ) { + Serial.print(pgm_read_word_near(&segGroups[segment][i])); Serial.print(F(" and ")); + } + if ( i == 1 ) { + Serial.println(pgm_read_word_near(&segGroups[segment][i])); + } + } + #endif + #endif } } if ( ledAM == 1 ) { // using both values inside the array as start and end to light up multiple leds segment += segDisplay * 7; uint16_t startLed = pgm_read_word_near(&segGroups[segment][0]); uint16_t endLed = pgm_read_word_near(&segGroups[segment][1]); -#ifdef DEBUG -#ifdef CUSTOMHELPER - if ( firstLoop ) { - Serial.print(F(". Leds ")); Serial.print(startLed); - Serial.print(F(" - ")); Serial.println(endLed); - } -#endif -#endif + #ifdef DEBUG + #ifdef CUSTOMHELPER + if ( firstLoop ) { + Serial.print(F(". Leds ")); Serial.print(startLed); + Serial.print(F(" - ")); Serial.println(endLed); + } + #endif + #endif for ( uint16_t i = startLed; i <= endLed; i++ ) { leds[i].setHSV(markerHSV[0], markerHSV[1], markerHSV[2]); } @@ -1323,10 +1621,10 @@ void showDigit(uint8_t digit, uint8_t pos) { } -void paletteSwitcher() { - /* As the name suggests this takes care of switching palettes. When adding palettes, make sure paletteCount increases - accordingly. A few examples of gradients/solid colors by using RGB values or HTML Color Codes below */ - static uint8_t paletteCount = 6; +void paletteSwitcher() { +/* As the name suggests this takes care of switching palettes. When adding palettes, make sure paletteCount increases + accordingly. A few examples of gradients/solid colors by using RGB values or HTML Color Codes below */ + static uint8_t paletteCount = 6; static uint8_t currentIndex = 0; if ( clockStatus == 1 ) { // Clock is starting up, so load selected palette from eeprom... uint8_t tmp = EEPROM.read(0); @@ -1335,54 +1633,54 @@ void paletteSwitcher() { } else { currentIndex = 0; // ...and default to 0 if returned value from eeprom is not 0 - 6 } -#ifdef DEBUG - Serial.print(F("paletteSwitcher(): loaded EEPROM value ")); - Serial.println(tmp); -#endif + #ifdef DEBUG + Serial.print(F("paletteSwitcher(): loaded EEPROM value ")); + Serial.println(tmp); + #endif } switch ( currentIndex ) { case 0: currentPalette = CRGBPalette16( CRGB( 224, 0, 32 ), - CRGB( 0, 0, 244 ), - CRGB( 128, 0, 128 ), - CRGB( 224, 0, 64 ) ); break; + CRGB( 0, 0, 244 ), + CRGB( 128, 0, 128 ), + CRGB( 224, 0, 64 ) ); break; case 1: currentPalette = CRGBPalette16( CRGB( 224, 16, 0 ), - CRGB( 192, 64, 0 ), - CRGB( 192, 128, 0 ), - CRGB( 240, 40, 0 ) ); break; + CRGB( 192, 64, 0 ), + CRGB( 192, 128, 0 ), + CRGB( 240, 40, 0 ) ); break; case 2: currentPalette = CRGBPalette16( CRGB::Aquamarine, - CRGB::Turquoise, - CRGB::Blue, - CRGB::DeepSkyBlue ); break; + CRGB::Turquoise, + CRGB::Blue, + CRGB::DeepSkyBlue ); break; case 3: currentPalette = RainbowColors_p; break; case 4: currentPalette = PartyColors_p; break; case 5: currentPalette = CRGBPalette16( CRGB::LawnGreen ); break; } -#ifdef DEBUG - Serial.print(F("paletteSwitcher(): selected palette ")); - Serial.println(currentIndex); -#endif + #ifdef DEBUG + Serial.print(F("paletteSwitcher(): selected palette ")); + Serial.println(currentIndex); + #endif if ( clockStatus == 0 ) { // only save selected palette to eeprom if clock is in normal running mode, not while in startup/setup/whatever EEPROM.put(0, currentIndex); -#ifdef NODEMCU - EEPROM.commit(); -#endif -#ifdef DEBUG - Serial.print(F("paletteSwitcher(): saved index ")); - Serial.print(currentIndex); - Serial.println(F(" to eeprom")); -#endif + #ifdef NODEMCU + EEPROM.commit(); + #endif + #ifdef DEBUG + Serial.print(F("paletteSwitcher(): saved index ")); + Serial.print(currentIndex); + Serial.println(F(" to eeprom")); + #endif } if ( currentIndex < paletteCount - 1 ) { - currentIndex++; + currentIndex++; } else { currentIndex = 0; } if ( colorPreview ) { previewMode(); } -#ifdef DEBUG - Serial.println(F("paletteSwitcher() done")); -#endif + #ifdef DEBUG + Serial.println(F("paletteSwitcher() done")); + #endif } @@ -1395,39 +1693,39 @@ void brightnessSwitcher() { } else { currentIndex = 0; // ...and default to 0 if returned value from eeprom is not 0 - 2 } -#ifdef DEBUG - Serial.print(F("brightnessSwitcher(): loaded EEPROM value ")); - Serial.println(tmp); -#endif + #ifdef DEBUG + Serial.print(F("brightnessSwitcher(): loaded EEPROM value ")); + Serial.println(tmp); + #endif } switch ( currentIndex ) { case 0: brightness = brightnessLevels[currentIndex]; break; case 1: brightness = brightnessLevels[currentIndex]; break; case 2: brightness = brightnessLevels[currentIndex]; break; } -#ifdef DEBUG - Serial.print(F("brightnessSwitcher(): selected brightness index ")); - Serial.println(currentIndex); -#endif + #ifdef DEBUG + Serial.print(F("brightnessSwitcher(): selected brightness index ")); + Serial.println(currentIndex); + #endif if ( clockStatus == 0 ) { // only save selected brightness to eeprom if clock is in normal running mode, not while in startup/setup/whatever EEPROM.put(1, currentIndex); -#ifdef NODEMCU - EEPROM.commit(); -#endif -#ifdef DEBUG - Serial.print(F("brightnessSwitcher(): saved index ")); - Serial.print(currentIndex); - Serial.println(F(" to eeprom")); -#endif + #ifdef NODEMCU + EEPROM.commit(); + #endif + #ifdef DEBUG + Serial.print(F("brightnessSwitcher(): saved index ")); + Serial.print(currentIndex); + Serial.println(F(" to eeprom")); + #endif } if ( currentIndex < 2 ) { - currentIndex++; + currentIndex++; } else { currentIndex = 0; } -#ifdef DEBUG { - Serial.println(F("brightnessSwitcher() done")); -#endif + #ifdef DEBUG { + Serial.println(F("brightnessSwitcher() done")); + #endif } @@ -1441,38 +1739,38 @@ void colorModeSwitcher() { } else { currentIndex = 0; // ...and default to 0 if returned value from eeprom is not 0 - 2 } -#ifdef DEBUG - Serial.print(F("colorModeSwitcher(): loaded EEPROM value ")); - Serial.println(tmp); -#endif + #ifdef DEBUG + Serial.print(F("colorModeSwitcher(): loaded EEPROM value ")); + Serial.println(tmp); + #endif } colorMode = currentIndex; -#ifdef DEBUG - Serial.print(F("colorModeSwitcher(): selected colorMode ")); - Serial.println(currentIndex); -#endif + #ifdef DEBUG + Serial.print(F("colorModeSwitcher(): selected colorMode ")); + Serial.println(currentIndex); + #endif if ( clockStatus == 0 ) { // only save selected colorMode to eeprom if clock is in normal running mode, not while in startup/setup/whatever EEPROM.put(3, currentIndex); -#ifdef NODEMCU - EEPROM.commit(); -#endif -#ifdef DEBUG - Serial.print(F("colorModeSwitcher(): saved index ")); - Serial.print(currentIndex); - Serial.println(F(" to eeprom")); -#endif + #ifdef NODEMCU + EEPROM.commit(); + #endif + #ifdef DEBUG + Serial.print(F("colorModeSwitcher(): saved index ")); + Serial.print(currentIndex); + Serial.println(F(" to eeprom")); + #endif } if ( currentIndex < 3 ) { - currentIndex++; + currentIndex++; } else { currentIndex = 0; } if ( colorPreview ) { previewMode(); } -#ifdef DEBUG { - Serial.println(F("colorModeSwitcher() done")); -#endif + #ifdef DEBUG { + Serial.println(F("colorModeSwitcher() done")); + #endif } @@ -1486,26 +1784,26 @@ void displayModeSwitcher() { } else { currentIndex = 0; // ...and default to 0 if returned value from eeprom is not 0 - 1 (24h/12h mode) } -#ifdef DEBUG - Serial.print(F("displayModeSwitcher(): loaded EEPROM value ")); - Serial.println(tmp); -#endif + #ifdef DEBUG + Serial.print(F("displayModeSwitcher(): loaded EEPROM value ")); + Serial.println(tmp); + #endif } displayMode = currentIndex; -#ifdef DEBUG - Serial.print(F("displayModeSwitcher(): selected displayMode ")); - Serial.println(currentIndex); -#endif + #ifdef DEBUG + Serial.print(F("displayModeSwitcher(): selected displayMode ")); + Serial.println(currentIndex); + #endif if ( clockStatus == 0 ) { // only save selected colorMode to eeprom if clock is in normal running mode, not while in startup/setup/whatever EEPROM.put(2, currentIndex); -#ifdef NODEMCU - EEPROM.commit(); -#endif -#ifdef DEBUG - Serial.print(F("displayModeSwitcher(): saved index ")); - Serial.print(currentIndex); - Serial.println(F(" to eeprom")); -#endif + #ifdef NODEMCU + EEPROM.commit(); + #endif + #ifdef DEBUG + Serial.print(F("displayModeSwitcher(): saved index ")); + Serial.print(currentIndex); + Serial.println(F(" to eeprom")); + #endif } if ( clockStatus == 0 ) { // show 12h/24h for 2 seconds after selected in normal run mode, don't show this on startup (status 1) FastLED.clear(); @@ -1525,38 +1823,38 @@ void displayModeSwitcher() { if ( millis() % 50 == 0 ) { FastLED.show(); } -#ifdef NODEMCU - yield(); -#endif + #ifdef NODEMCU + yield(); + #endif } } if ( currentIndex < 1 ) { - currentIndex++; + currentIndex++; } else { currentIndex = 0; } -#ifdef DEBUG { - Serial.println(F("displayModeSwitcher() done")); -#endif + #ifdef DEBUG { + Serial.println(F("displayModeSwitcher() done")); + #endif } void previewMode() { - /* This will simply display "8" on all positions, speed up the color cyling and preview the - selected palette or colorMode */ +/* This will simply display "8" on all positions, speed up the color cyling and preview the + selected palette or colorMode */ if ( clockStatus == 1 ) return; // don't preview when starting up unsigned long previewStart = millis(); uint16_t colorSpeedBak = colorSpeed; colorSpeed = 5; while ( millis() - previewStart <= uint16_t ( colorPreviewDuration * 1000L ) ) { - for ( uint8_t i = 0; i < LED_DIGITS; i++ ) { + for ( uint8_t i = 0; i < LED_DIGITS; i++ ) { showDigit(8, i); } colorizeOutput(colorMode); FastLED.show(); -#ifdef NODEMCU - yield(); -#endif + #ifdef NODEMCU + yield(); + #endif } colorSpeed = colorSpeedBak; FastLED.clear(); @@ -1614,16 +1912,16 @@ uint8_t inputButtons() { } lastState = currentState; lastReadout = millis(); -#ifdef DEBUG // output some information and read serial input, if available - uint8_t serialInput = dbgInput(); - if ( serialInput != 0 ) { - Serial.print(F("inputButtons(): Serial input detected: ")); Serial.println(serialInput); - retVal = serialInput; - } - if ( retVal != 0 ) { - Serial.print(F("inputButtons(): Return value is: ")) ; Serial.print(retVal); Serial.print(F(" - btnRepeatCounter is: ")); Serial.println(btnRepeatCounter); - } -#endif + #ifdef DEBUG // output some information and read serial input, if available + uint8_t serialInput = dbgInput(); + if ( serialInput != 0 ) { + Serial.print(F("inputButtons(): Serial input detected: ")); Serial.println(serialInput); + retVal = serialInput; + } + if ( retVal != 0 ){ + Serial.print(F("inputButtons(): Return value is: ")) ; Serial.print(retVal); Serial.print(F(" - btnRepeatCounter is: ")); Serial.println(btnRepeatCounter); + } + #endif return retVal; } @@ -1632,214 +1930,202 @@ uint8_t inputButtons() { #ifdef USENTP /* This syncs system time to the RTC at startup and will periodically do other sync related things, like syncing rtc to ntp time */ -void syncHelper() { - static unsigned long lastSync = millis(); // keeps track of the last time a sync attempt has been made - if ( millis() - lastSync < 60000 && clockStatus != 1 ) return; // only allow one ntp request per minute - if ( WiFi.status() != WL_CONNECTED ) { -#ifdef DEBUG - Serial.println(F("syncHelper(): No WiFi connection")); - return; -#endif + void syncHelper() { + static unsigned long lastSync = millis(); // keeps track of the last time a sync attempt has been made + if ( millis() - lastSync < 60000 && clockStatus != 1 ) return; // only allow one ntp request per minute + if ( WiFi.status() != WL_CONNECTED ) { + #ifdef DEBUG + Serial.println(F("syncHelper(): No WiFi connection")); + return; + #endif + } + #ifndef USERTC + #ifndef USENTP + #ifdef DEBUG + Serial.println(F("syncHelper(): No RTC and no NTP configured, nothing to do...")); + return; + #endif + #endif + #endif + time_t ntpTime = 0; + #ifdef USERTC + RtcDateTime ntpTimeConverted = ntpTime; + #endif + if ( clockStatus == 1 ) { // looks like the sketch has just started running... + #ifdef DEBUG + Serial.println(F("syncHelper(): Initial sync on power up...")); + #endif + ntpTime = getTimeNTP(); + #ifdef DEBUG + Serial.print(F("syncHelper(): NTP result is ")); + Serial.println(ntpTime); + #endif + lastSync = millis(); + } else { + #ifdef DEBUG + Serial.println(F("syncHelper(): Resyncing to NTP...")); + #endif + ntpTime = getTimeNTP(); + #ifdef DEBUG + Serial.print(F("syncHelper(): NTP result is ")); + Serial.println(ntpTime); + #endif + lastSync = millis(); + } + #ifdef USERTC + ntpTimeConverted = { year(ntpTime), month(ntpTime), day(ntpTime), + hour(ntpTime), minute(ntpTime), second(ntpTime) }; + RtcDateTime rtcTime = Rtc.GetDateTime(); // get current time from the rtc.... + #ifdef DEBUG + if ( ntpTime > 100 ) { + Rtc.SetDateTime(ntpTimeConverted); + } + #endif + #else + time_t sysTime = now(); // ...or from system + #ifdef DEBUG + Serial.println(F("syncHelper(): No RTC configured, using system time")); + Serial.print(F("syncHelper(): sysTime was ")); + Serial.println(now()); + #endif + if ( ntpTime > 100 ) { + setTime(ntpTime); + } + #endif + #ifdef DEBUG + Serial.println(F("syncHelper() done")); + #endif } -#ifndef USERTC -#ifndef USENTP -#ifdef DEBUG - Serial.println(F("syncHelper(): No RTC and no NTP configured, nothing to do...")); - return; -#endif -#endif -#endif - time_t ntpTime = 0; -#ifdef USERTC - RtcDateTime ntpTimeConverted = ntpTime; -#endif - if ( clockStatus == 1 ) { // looks like the sketch has just started running... -#ifdef DEBUG - Serial.println(F("syncHelper(): Initial sync on power up...")); -#endif - ntpTime = getTimeNTP(); -#ifdef DEBUG - Serial.print(F("syncHelper(): NTP result is ")); - Serial.println(ntpTime); -#endif - lastSync = millis(); - } else { -#ifdef DEBUG - Serial.println(F("syncHelper(): Resyncing to NTP...")); -#endif - ntpTime = getTimeNTP(); -#ifdef DEBUG - Serial.print(F("syncHelper(): NTP result is ")); - Serial.println(ntpTime); -#endif - lastSync = millis(); - } -#ifdef USERTC - ntpTimeConverted = { year(ntpTime), month(ntpTime), day(ntpTime), - hour(ntpTime), minute(ntpTime), second(ntpTime) - }; - RtcDateTime rtcTime = Rtc.GetDateTime(); // get current time from the rtc.... -#ifdef DEBUG - if ( ntpTime > 100 ) { - Rtc.SetDateTime(ntpTimeConverted); - } -#endif -#else - time_t sysTime = now(); // ...or from system -#ifdef DEBUG - Serial.println(F("syncHelper(): No RTC configured, using system time")); - Serial.print(F("syncHelper(): sysTime was ")); - Serial.println(now()); -#endif - if ( ntpTime > 100 ) { - setTime(ntpTime); - } -#endif -#ifdef DEBUG - Serial.println(F("syncHelper() done")); -#endif -} - -time_t getTimeNTP() { - unsigned long startTime = millis(); - time_t timeNTP; - if ( WiFi.status() != WL_CONNECTED ) { -#ifdef DEBUG - Serial.print(F("getTimeNTP(): Not connected, WiFi.status is ")); - Serial.println(WiFi.status()); -#endif - } // Sometimes the connection doesn't work right away although status is WL_CONNECTED... - while ( millis() - startTime < 2000 ) { // ...so we'll wait a moment before causing network traffic -#ifdef NODEMCU - yield(); -#endif + + time_t getTimeNTP() { + unsigned long startTime = millis(); + time_t timeNTP; + if ( WiFi.status() != WL_CONNECTED ) { + #ifdef DEBUG + Serial.print(F("getTimeNTP(): Not connected, WiFi.status is ")); + Serial.println(WiFi.status()); + #endif + } // Sometimes the connection doesn't work right away although status is WL_CONNECTED... + while ( millis() - startTime < 2000 ) { // ...so we'll wait a moment before causing network traffic + #ifdef NODEMCU + yield(); + #endif + } + timeClient.update(); + timeNTP = timeClient.getEpochTime(); + if ( timeNTP < 100 ) { + #ifdef DEBUG + Serial.print(F("getTimeNTP(): NTP returned ")); Serial.println(timeNTP); + Serial.print(F(" - trying again...")); + #endif + } + timeClient.update(); + timeNTP = timeClient.getEpochTime(); + if ( timeNTP < 100 ) { + #ifdef DEBUG + Serial.print(F("getTimeNTP(): NTP returned ")); Serial.println(timeNTP); + Serial.print(F(" - giving up")); + #endif + } + #ifdef DEBUG + Serial.println(F("getTimeNTP() done")); + #endif + return timeNTP; } - timeClient.update(); - timeNTP = timeClient.getEpochTime(); - if ( timeNTP < 100 ) { -#ifdef DEBUG - Serial.print(F("getTimeNTP(): NTP returned ")); Serial.println(timeNTP); - Serial.print(F(" - trying again...")); -#endif - } - timeClient.update(); - timeNTP = timeClient.getEpochTime(); - if ( timeNTP < 100 ) { -#ifdef DEBUG - Serial.print(F("getTimeNTP(): NTP returned ")); Serial.println(timeNTP); - Serial.print(F(" - giving up")); -#endif - } -#ifdef DEBUG - Serial.println(F("getTimeNTP() done")); -#endif - return timeNTP; -} #endif // --- // functions below will only be included if DEBUG is defined on top of the sketch #ifdef DEBUG -void printTime() { - /* outputs current system and RTC time to the serial monitor, adds autoDST if defined */ - time_t tmp = now(); -#ifdef USERTC - RtcDateTime tmp2 = Rtc.GetDateTime().Epoch32Time(); - setTime(tmp2); - tmp = now(); -#endif - Serial.println(F("-----------------------------------")); - Serial.print(F("System time is : ")); - if ( hour(tmp) < 10 ) Serial.print(F("0")); - Serial.print(hour(tmp)); Serial.print(F(":")); - if ( minute(tmp) < 10 ) Serial.print(F("0")); - Serial.print(minute(tmp)); Serial.print(F(":")); - if ( second(tmp) < 10 ) Serial.print(F("0")); - Serial.println(second(tmp)); - Serial.print(F("System date is : ")); - Serial.print(year(tmp)); Serial.print("-"); - Serial.print(month(tmp)); Serial.print("-"); - Serial.print(day(tmp)); Serial.println(F(" (Y/M/D)")); -#ifdef USERTC - Serial.print(F("RTC time is : ")); - if ( hour(tmp2) < 10 ) Serial.print(F("0")); - Serial.print(hour(tmp2)); Serial.print(F(":")); - if ( minute(tmp2) < 10 ) Serial.print(F("0")); - Serial.print(minute(tmp2)); Serial.print(F(":")); - if ( second(tmp2) < 10 ) Serial.print(F("0")); - Serial.println(second(tmp2)); - Serial.print(F("RTC date is : ")); - Serial.print(year(tmp2)); Serial.print("-"); - Serial.print(month(tmp2)); Serial.print("-"); - Serial.print(day(tmp2)); Serial.println(F(" (Y/M/D)")); -#endif -#ifdef AUTODST - tmp = myTimeZone.toLocal(tmp); - Serial.print(F("autoDST time is: ")); - if ( hour(tmp) < 10 ) Serial.print(F("0")); - Serial.print(hour(tmp)); Serial.print(F(":")); - if ( minute(tmp) < 10 ) Serial.print(F("0")); - Serial.print(minute(tmp)); Serial.print(F(":")); - if ( second(tmp) < 10 ) Serial.print(F("0")); - Serial.println(second(tmp)); - Serial.print(F("autoDST date is: ")); - Serial.print(year(tmp)); Serial.print("-"); - Serial.print(month(tmp)); Serial.print("-"); - Serial.print(day(tmp)); Serial.println(F(" (Y/M/D)")); -#endif - Serial.println(F("-----------------------------------")); -} - - -uint8_t dbgInput() { - /* this catches input from the serial console and hands it over to inputButtons() if DEBUG is defined - Serial input "7" matches buttonA, "8" matches buttonB, "9" matches buttonA + buttonB */ - if ( Serial.available() > 0 ) { - uint8_t incomingByte = 0; - incomingByte = Serial.read(); - if ( incomingByte == 52 ) { // 4 - long press buttonA - btnRepeatCounter = 10; - return 1; - } - if ( incomingByte == 53 ) { // 5 - long press buttonB - btnRepeatCounter = 10; - return 2; - } - if ( incomingByte == 54 ) { // 6 - long press buttonA + buttonB - btnRepeatCounter = 10; - return 3; - } - if ( incomingByte == 55 ) return 1; // 7 - buttonA - if ( incomingByte == 56 ) return 2; // 8 - buttonB - if ( incomingByte == 57 ) return 3; // 9 - buttonA + buttonB + void printTime() { + /* outputs current system and RTC time to the serial monitor, adds autoDST if defined */ + time_t tmp = now(); + #ifdef USERTC + RtcDateTime tmp2 = Rtc.GetDateTime().Epoch32Time(); + setTime(tmp2); + tmp = now(); + #endif + Serial.println(F("-----------------------------------")); + Serial.print(F("System time is : ")); + if ( hour(tmp) < 10 ) Serial.print(F("0")); + Serial.print(hour(tmp)); Serial.print(F(":")); + if ( minute(tmp) < 10 ) Serial.print(F("0")); + Serial.print(minute(tmp)); Serial.print(F(":")); + if ( second(tmp) < 10 ) Serial.print(F("0")); + Serial.println(second(tmp)); + Serial.print(F("System date is : ")); + Serial.print(year(tmp)); Serial.print("-"); + Serial.print(month(tmp)); Serial.print("-"); + Serial.print(day(tmp)); Serial.println(F(" (Y/M/D)")); + #ifdef USERTC + Serial.print(F("RTC time is : ")); + if ( hour(tmp2) < 10 ) Serial.print(F("0")); + Serial.print(hour(tmp2)); Serial.print(F(":")); + if ( minute(tmp2) < 10 ) Serial.print(F("0")); + Serial.print(minute(tmp2)); Serial.print(F(":")); + if ( second(tmp2) < 10 ) Serial.print(F("0")); + Serial.println(second(tmp2)); + Serial.print(F("RTC date is : ")); + Serial.print(year(tmp2)); Serial.print("-"); + Serial.print(month(tmp2)); Serial.print("-"); + Serial.print(day(tmp2)); Serial.println(F(" (Y/M/D)")); + #endif + #ifdef AUTODST + tmp = myTimeZone.toLocal(tmp); + Serial.print(F("autoDST time is: ")); + if ( hour(tmp) < 10 ) Serial.print(F("0")); + Serial.print(hour(tmp)); Serial.print(F(":")); + if ( minute(tmp) < 10 ) Serial.print(F("0")); + Serial.print(minute(tmp)); Serial.print(F(":")); + if ( second(tmp) < 10 ) Serial.print(F("0")); + Serial.println(second(tmp)); + Serial.print(F("autoDST date is: ")); + Serial.print(year(tmp)); Serial.print("-"); + Serial.print(month(tmp)); Serial.print("-"); + Serial.print(day(tmp)); Serial.println(F(" (Y/M/D)")); + #endif + Serial.println(F("-----------------------------------")); } - return 0; -} -#endif -// --- + + + uint8_t dbgInput() { + /* this catches input from the serial console and hands it over to inputButtons() if DEBUG is defined + Serial input "7" matches buttonA, "8" matches buttonB, "9" matches buttonA + buttonB */ + if ( Serial.available() > 0 ) { + uint8_t incomingByte = 0; + incomingByte = Serial.read(); + if ( incomingByte == 52 ) { // 4 - long press buttonA + btnRepeatCounter = 10; + return 1; + } + if ( incomingByte == 53 ) { // 5 - long press buttonB + btnRepeatCounter = 10; + return 2; + } + if ( incomingByte == 54 ) { // 6 - long press buttonA + buttonB + btnRepeatCounter = 10; + return 3; + } + if ( incomingByte == 55 ) return 1; // 7 - buttonA + if ( incomingByte == 56 ) return 2; // 8 - buttonB + if ( incomingByte == 57 ) return 3; // 9 - buttonA + buttonB + } + return 0; + } + #endif + // --- #ifdef USEWIFI -void connectWPS() { // join network using wps. Will try for 3 times before exiting... -#ifdef DEBUG - Serial.println(F("connectWPS(): Initializing WPS setup...")); -#endif - uint8_t counter = 1; - static unsigned long startTimer = millis(); -#ifdef LEDSTUFF - FastLED.clear(); - showDigit(10, digitPositions[0]); - showDigit(11, digitPositions[1]); - showDigit(12, digitPositions[2]); - showDigit(counter, digitPositions[3]); - colorizeOutput(colorMode); - FastLED.show(); -#endif - while ( counter < 4 ) { -#ifdef LEDSTUFF - if ( millis() % 50 == 0 ) { + void connectWPS() { // join network using wps. Will try for 3 times before exiting... + #ifdef DEBUG + Serial.println(F("connectWPS(): Initializing WPS setup...")); + #endif + uint8_t counter = 1; + static unsigned long startTimer = millis(); + #ifdef LEDSTUFF FastLED.clear(); showDigit(10, digitPositions[0]); showDigit(11, digitPositions[1]); @@ -1847,178 +2133,189 @@ void connectWPS() { showDigit(counter, digitPositions[3]); colorizeOutput(colorMode); FastLED.show(); + #endif + while ( counter < 4 ) { + #ifdef LEDSTUFF + if ( millis() % 50 == 0 ) { + FastLED.clear(); + showDigit(10, digitPositions[0]); + showDigit(11, digitPositions[1]); + showDigit(12, digitPositions[2]); + showDigit(counter, digitPositions[3]); + colorizeOutput(colorMode); + FastLED.show(); + } + #endif + if ( millis() - startTimer > 300 ) { + #ifdef DEBUG + Serial.print(F("connectWPS(): Waiting for WiFi/WPS, try ")); + Serial.println(counter); + #endif + WiFi.beginWPSConfig(); + if ( WiFi.SSID().length() <= 0 ) counter++; else counter = 4; + startTimer = millis(); + } + #ifdef NODEMCU + yield(); + #endif } -#endif - if ( millis() - startTimer > 300 ) { -#ifdef DEBUG - Serial.print(F("connectWPS(): Waiting for WiFi/WPS, try ")); - Serial.println(counter); -#endif - WiFi.beginWPSConfig(); - if ( WiFi.SSID().length() <= 0 ) counter++; else counter = 4; - startTimer = millis(); - } -#ifdef NODEMCU - yield(); -#endif - } - FastLED.clear(); - startTimer = millis(); - if ( WiFi.SSID().length() > 0 ) { -#ifdef LEDSTUFF FastLED.clear(); - showDigit(5, digitPositions[0]); - showDigit(5, digitPositions[1]); - showDigit(1, digitPositions[2]); - showDigit(13, digitPositions[3]); - colorizeOutput(colorMode); - FastLED.show(); -#endif -#ifdef DEBUG - Serial.print(F("connectWPS(): Connected to SSID: ")); Serial.println(WiFi.SSID()); -#endif - while ( millis() - startTimer < 2000 ) { -#ifdef NODEMCU - yield(); -#endif + startTimer = millis(); + if ( WiFi.SSID().length() > 0 ) { + #ifdef LEDSTUFF + FastLED.clear(); + showDigit(5, digitPositions[0]); + showDigit(5, digitPositions[1]); + showDigit(1, digitPositions[2]); + showDigit(13, digitPositions[3]); + colorizeOutput(colorMode); + FastLED.show(); + #endif + #ifdef DEBUG + Serial.print(F("connectWPS(): Connected to SSID: ")); Serial.println(WiFi.SSID()); + #endif + while ( millis() - startTimer < 2000 ) { + #ifdef NODEMCU + yield(); + #endif + } + #ifdef USENTP + clockStatus = 1; + syncHelper(); + clockStatus = 0; + #endif USENTP + } else { + #ifdef DEBUG + Serial.println(F("connectWPS(): Failed, no WPS connection established")); + #endif } -#ifdef USENTP - clockStatus = 1; - syncHelper(); - clockStatus = 0; -#endif USENTP - } else { -#ifdef DEBUG - Serial.println(F("connectWPS(): Failed, no WPS connection established")); -#endif + #ifdef DEBUG + Serial.println(F("connectWPS() done")); + #endif } -#ifdef DEBUG - Serial.println(F("connectWPS() done")); -#endif -} #endif #ifdef CUSTOMHELPER /* This assists in troubleshooting and basic configuration. Testing all neccessary steps to get showSegment(), showDigit(), showDots() to work. Ugly and using delay() but does the job ^^ */ -void customHelper() { - markerHSV[0] = 96; - markerHSV[1] = 255; - markerHSV[2] = 60; - colorModeSwitcher(); - paletteSwitcher(); - brightness = 50; - currentPalette = RainbowColors_p; - uint8_t test = 1; -#ifdef DEBUG - Serial.println(F("\n\n\nSome kind of troubleshooting/custom assistant... ^^")); - Serial.println(F("\nTests will finish before proceeding to the next one.\n")); - Serial.print(F("The first step is to check all leds, so this test will\nsimply light up all the leds from 0 to ")); Serial.println(LED_COUNT - 1); - Serial.println(F("Press button A (or send 7 using serial input) to advance to the next step...\n")); -#endif - while ( test == 1 ) { - for ( uint16_t i = 0; i < LED_COUNT; i++ ) { - leds[i].setHSV(markerHSV[0], markerHSV[1], markerHSV[2]); - FastLED.show(); - delay(75); - if ( inputButtons() != 0 ) test++; - } - FastLED.clear(); - delay(300); - } -#ifdef DEBUG - Serial.println(F("\n\n\nNext we will light up segments 0-6 (a-g) at position 0, this")); - Serial.println(F("will show if all of the leds inside segArray[][] for position 0 are correct.")); - Serial.println(F("Press button A (or send 7 using serial input) to advance to the next step...\n")); -#endif - FastLED.clear(); - while ( test == 2 ) { - for ( uint8_t i = 0; i < 7; i++ ) { - showSegment(i, 0); - FastLED.show(); - delay(750); - if ( inputButtons() != 0 ) test++; - } - FastLED.clear(); - FastLED.show(); - delay(300); - firstLoop = false; - } -#ifdef DEBUG - Serial.println(F("\n\nNow let's check this for all the positions as defined (LED_DIGITS 4 or 6), starting from 0...")); - Serial.println(F("Press button A (or send 7 using serial input) to advance to the next step...\n")); -#endif - firstLoop = true; - while ( test == 3 ) { - for ( uint8_t pos = 0; pos < LED_DIGITS; pos++ ) { - for ( uint8_t i = 0; i < 7; i++ ) { - showSegment(i, pos); + void customHelper() { + markerHSV[0] = 96; + markerHSV[1] = 255; + markerHSV[2] = 60; + colorModeSwitcher(); + paletteSwitcher(); + brightness = 50; + currentPalette = RainbowColors_p; + uint8_t test = 1; + #ifdef DEBUG + Serial.println(F("\n\n\nSome kind of troubleshooting/custom assistant... ^^")); + Serial.println(F("\nTests will finish before proceeding to the next one.\n")); + Serial.print(F("The first step is to check all leds, so this test will\nsimply light up all the leds from 0 to ")); Serial.println(LED_COUNT - 1); + Serial.println(F("Press button A (or send 7 using serial input) to advance to the next step...\n")); + #endif + while ( test == 1 ) { + for ( uint16_t i = 0; i < LED_COUNT; i++ ) { + leds[i].setHSV(markerHSV[0], markerHSV[1], markerHSV[2]); FastLED.show(); - delay(400); + delay(75); if ( inputButtons() != 0 ) test++; } - if ( firstLoop ) Serial.println(); - } - FastLED.clear(); - FastLED.show(); - delay(300); - firstLoop = false; - } -#ifdef DEBUG - Serial.println(F("\n\nTesting showDigit() on position 0, displaying 0-9")); - Serial.println(F("Press button A (or send 7 using serial input) to advance to the next step...\n")); -#endif - while ( test == 4 ) { - for ( uint8_t i = 0; i < 10; i++ ) { FastLED.clear(); - showDigit(i, 0); - if ( inputButtons() != 0 ) test++; - FastLED.show(); - delay(500); + delay(300); } + #ifdef DEBUG + Serial.println(F("\n\n\nNext we will light up segments 0-6 (a-g) at position 0, this")); + Serial.println(F("will show if all of the leds inside segArray[][] for position 0 are correct.")); + Serial.println(F("Press button A (or send 7 using serial input) to advance to the next step...\n")); + #endif + FastLED.clear(); + while ( test == 2 ) { + for ( uint8_t i = 0; i < 7; i++ ) { + showSegment(i, 0); + FastLED.show(); + delay(750); + if ( inputButtons() != 0 ) test++; + } + FastLED.clear(); + FastLED.show(); + delay(300); + firstLoop = false; + } + #ifdef DEBUG + Serial.println(F("\n\nNow let's check this for all the positions as defined (LED_DIGITS 4 or 6), starting from 0...")); + Serial.println(F("Press button A (or send 7 using serial input) to advance to the next step...\n")); + #endif + firstLoop = true; + while ( test == 3 ) { + for ( uint8_t pos = 0; pos < LED_DIGITS; pos++ ) { + for ( uint8_t i = 0; i < 7; i++ ) { + showSegment(i, pos); + FastLED.show(); + delay(400); + if ( inputButtons() != 0 ) test++; + } + if ( firstLoop ) Serial.println(); + } + FastLED.clear(); + FastLED.show(); + delay(300); + firstLoop = false; + } + #ifdef DEBUG + Serial.println(F("\n\nTesting showDigit() on position 0, displaying 0-9")); + Serial.println(F("Press button A (or send 7 using serial input) to advance to the next step...\n")); + #endif + while ( test == 4 ) { + for ( uint8_t i = 0; i < 10; i++ ) { + FastLED.clear(); + showDigit(i, 0); + if ( inputButtons() != 0 ) test++; + FastLED.show(); + delay(500); + } FastLED.clear(); FastLED.show(); delay(300); - } -#ifdef DEBUG - Serial.println(F("\n\nTesting showDots() lighting up the upper/lower dots in a repeating pattern...")); - Serial.println(F("Press button A (or send 7 using serial input) to advance to the next step...\n")); -#endif - while ( test == 5 ) { - if ( second() % 2 == 1 ) { - showDots(0); - } else { - showDots(1); } - if ( inputButtons() != 0 ) test++; - FastLED.show(); - delay(20); - FastLED.clear(); - } - FastLED.clear(); - FastLED.show(); - delay(300); -#ifdef DEBUG - Serial.println(F("\n\nFinal test, displaying 0-9 on all positions, using colorizeOutput();")); - Serial.println(F("Press button A (or send 7 using serial input) to start over...\n")); -#endif - while ( test == 6 ) { - for ( uint8_t i = 0; i < 10; i++ ) { - for ( uint8_t pos = 0; pos < LED_DIGITS; pos++ ) { - showDigit(i, pos); + #ifdef DEBUG + Serial.println(F("\n\nTesting showDots() lighting up the upper/lower dots in a repeating pattern...")); + Serial.println(F("Press button A (or send 7 using serial input) to advance to the next step...\n")); + #endif + while ( test == 5 ) { + if ( second() % 2 == 1 ) { + showDots(0); + } else { + showDots(1); } if ( inputButtons() != 0 ) test++; - colorizeOutput(1); FastLED.show(); - delay(500); + delay(20); FastLED.clear(); } + FastLED.clear(); + FastLED.show(); + delay(300); + #ifdef DEBUG + Serial.println(F("\n\nFinal test, displaying 0-9 on all positions, using colorizeOutput();")); + Serial.println(F("Press button A (or send 7 using serial input) to start over...\n")); + #endif + while ( test == 6 ) { + for ( uint8_t i = 0; i < 10; i++ ) { + for ( uint8_t pos = 0; pos < LED_DIGITS; pos++ ) { + showDigit(i, pos); + } + if ( inputButtons() != 0 ) test++; + colorizeOutput(1); + FastLED.show(); + delay(500); + FastLED.clear(); + } + } + FastLED.clear(); + FastLED.show(); + delay(500); } - FastLED.clear(); - FastLED.show(); - delay(500); -} #endif /* Wooohaa... this one took a bit longer than expected... ^^ /daniel cikic - 07/2021 */